Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 525–538 | Cite as

Adsorption of Hydrogen on Gold–Nickel Nanoparticles: Simulation and Experiment

  • N. V. Dokhlikova
  • M. V. GrishinEmail author
  • S. Yu. Sarvadii
  • B. R. Shub
CHEMICAL PHYSICS OF NANOMATERIALS
  • 15 Downloads

Abstract

This paper presents the results of quantum chemical simulation and experiments to determine the effects of the adsorption of hydrogen onto gold–nickel nanoparticles. Numerical experiments revealed that the most energetically favorable positions of adsorbed hydrogen atoms are mainly located in the vicinity of gold atoms due to electron density redistribution between gold and nickel in bimetallic clusters. Experimental studies of the nanostructured gold–nickel coating deposited on graphite confirmed the theoretically predicted effects.

Keywords:

nanoparticles gold nickel hydrogen adsorption interaction quantum chemical simulation scanning tunnel microscopy spectroscopy 

Notes

FUNDING

The work was performed within the framework of the state task of the Semenov Institute of Chemical Physics RAS with partial funding in support of the experiment by the Russian Foundation for basic research (project nos. 16-29-05119 and 17-03-00225). The calculations were performed using the resources of Joint Super Computer Center RAS.

REFERENCES

  1. 1.
    A. E. Barnett, G. W. Dembinski, and J. H. Sinfelt, US Patent No. 3442973 (1969).Google Scholar
  2. 2.
    S. N. Augustine and W. M. H. Sachler, J. Phys. Chem. 91, 5953 (1987).CrossRefGoogle Scholar
  3. 3.
    G. Diaz, A. Gomezcortes, and M. Benaisa, Catal. Lett. 38, 63 (1996).CrossRefGoogle Scholar
  4. 4.
    Y. Y. Huang and W. M. H. Sachtler, J. Catal. 188, 215 (1999).CrossRefGoogle Scholar
  5. 5.
    S. Nigam, S. K. Sahoo, P. Sarkar, and Ch. Majumder, Chem. Phys. Lett. 584, 108 (2013).CrossRefGoogle Scholar
  6. 6.
    D. W. Yuan, Y. Wang, and Zh. Zeng, J. Chem. Phys. 122, 114310 (2005).CrossRefGoogle Scholar
  7. 7.
    P. St. Petkov, G. N. Vayssilov, S. Kruger, and N. Roch, Chem. Phys. 348, 61 (2008).CrossRefGoogle Scholar
  8. 8.
    J.-J. Guo, J.-X. Yang, and D. Die, J. Mol. Struct.: THEOCHEM 896, 1 (2009).CrossRefGoogle Scholar
  9. 9.
    N. V. Dokhlikova, N. N. Kolchenko, M. V. Grishin, and B. R. Shub, Nanotechnol. Russ. 11, 7 (2016).CrossRefGoogle Scholar
  10. 10.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, and R. Car, J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  11. 11.
    T. Ozaki, Phys. Rev. B 67, 5108 (2003).CrossRefGoogle Scholar
  12. 12.
    A. K. Gatin, M. V. Grishin, S. Yu. Sarvadii, and B. R. Shub, Russ. J. Phys. Chem. B 12, 317 (2018).CrossRefGoogle Scholar
  13. 13.
    P. Gill, W. Murray, and M. Wright, Practical Optimization (Academic, London, 1982).Google Scholar
  14. 14.
    A. K. Gatin, M. V. Grishin, N. V. Dokhlikova, N. N. Kolchenko, and B. R. Shub, Dokl. Phys. Chem. 470, 125 (2016).CrossRefGoogle Scholar
  15. 15.
    R. Zagradnik and R. Polak, Principles of Quantum Chemistry (SNTL, Praha, 1976; Mir, Moscow, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Dokhlikova
    • 1
  • M. V. Grishin
    • 1
    Email author
  • S. Yu. Sarvadii
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations