Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 170–176 | Cite as

Kinetics of Isoprene Polymerization in the Presence of the Catalytic System NdCl3 · nCH3CH(OH)CH3-Al(i-C4H9)3-Piperylene

  • K. A. Tereshchenko
  • N. V. UlitinEmail author
  • D. A. Shiyan
  • G. F. Al’metova
  • E. M. Zakharova
  • I. Sh. Nasyrov
  • V. P. Zakharov
Chemical Physics of Polymer Materials
  • 5 Downloads

Abstract

A kinetic model is developed for the formation of the NdCl3 · nROH complex (ROH is isopropanol and n is the number of alcohol molecules in the complex), which relates the initial diameter of NdCl3 particles with the kinetics of NdCl3 · nROH complex formation and n. A kinetic model is also developed for isoprene polymerization in the presence of the NdCl3 · nROH-Al(i-C4H9)3-piperylene catalytic system that describes the kinetics of polymerization and molecular weight characteristics of isoprene rubber. According to the simulation, it was shown that (1) the experimentally observed increase in the polymerization rate with increasing n from 0.75 to 2.43 is caused by an increase in the concentration of chain growth sites; (2) the experimentally observed dependence of the molecular weight characteristics of isoprene rubber on n is explained by the functioning of various types of chain growth sites at different values of n and the distribution of isoprene concentration over the radius of the polymer-catalyst particle (particles of the catalytic system with chains of isoprene rubber adsorbed on its surface).

Keywords

isoprene rubber polymerization kinetics neodymium Ziegler-Natta catalytic system reverse kinetic problem polymerization turbulent-flow tubular reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Friebe, O. Nuyken, and W. Obrecht, Adv. Polym. Sci. 204, 1 (2006).CrossRefGoogle Scholar
  2. 2.
    V. P. Zakharov, V. Z. Mingaleev, A. A. Berlin, I. Sh. Nasyrov, D. A. Zhavoronkov, and E. M. Zakharova, Russ. J. Phys. Chem. B 9 (2) 300 (2015).CrossRefGoogle Scholar
  3. 3.
    Yu. V. Morozov, V. Z. Mingaleev, I. Sh. Nasyrov, V. P. Zakharov, Yu. B. Monakov, Dokl. Chemistry. 440 (2), 286 (2011).CrossRefGoogle Scholar
  4. 4.
    V. P. Zakharov, V. Z. Mingaleev, Yu. V. Morozov, I. Sh. Nasyrov, and E. M. Zakharova, Russ. J. Appl. Chem. 85 (6), 945 (2012).CrossRefGoogle Scholar
  5. 5.
    R. Hooke and T. A. Jeeves, J. Ass. Comp. Machin. 8 (2), 212 (1961).CrossRefGoogle Scholar
  6. 6.
    V. P. Zakharov, V. Z. Mingaleev, E. M. Zakharova, I. Sh. Nasyrov, and D. A. Zhavoronkov, Russ. J. Appl. Chem. 86 (6), 909 (2013).CrossRefGoogle Scholar
  7. 7.
    V. S. Bodrova, E. P. Piskareva, L. F. Shelokhneva, and I. A. Poletaeva J. Appl. Polym. Sci. 40 (11), 1054 (1908).Google Scholar
  8. 8.
    S. Floyd, T. Heiskanen, T. W. Taylor, G. E. Mann, and W. H. Ray, J. Appl. Polym. Sci. 33 (4), 1021 (1987).CrossRefGoogle Scholar
  9. 9.
    K. A. Tereshchenko, A. S. Ziganshina, V. P. Zakharov, and N.V. Ulitin, Russ. J. Phys. Chem. B 11 (5), 504 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. A. Tereshchenko
    • 1
  • N. V. Ulitin
    • 1
    Email author
  • D. A. Shiyan
    • 1
  • G. F. Al’metova
    • 1
  • E. M. Zakharova
    • 2
  • I. Sh. Nasyrov
    • 3
  • V. P. Zakharov
    • 4
  1. 1.Kazan National Research Technological UniversityKazan, Republic of TatarstanRussia
  2. 2.Ufa Institute of Chemistry, Ufa Federal Research CenterRussian Academy of SciencesRepublic of Bashkortostan, UfaRussia
  3. 3.OAO Sintez-KauchukSterlitamak, Republic of BashkortostanRussia
  4. 4.Bashkir State UniversityUfa, Republic of BashkortostanRussia

Personalised recommendations