Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 139–144 | Cite as

Theoretical and Experimental Study of Cellular Modes of Filtration Combustion of Cylindrical Systems

  • P. M. KrishenikEmail author
  • S. V. Kostin
  • N. I. Ozerkovskaya
  • K. G. Shkadinskii
Combustion, Explosion, and Shock Waves
  • 6 Downloads

Abstract

Experimentally and theoretically (using mathematical modeling) the combustion of the undeformed porous matrix of cylindrically symmetric forms, in which the active gas reagent is fed from outside through the permeable surface part owing to difference between outside and inside pore pressure in the reaction zone, has been studied. It has been shown that under conditions of the instability of many-dimensional filtration combustion separate cells of exothermic chemical combustion form, which propagated in self-sustained mode. Structure of cellular waves, distribution dynamics and moving direction are determined by totality of factors: temperature field, gas pressure gradients, intensity of exothermic heat release, geometric parameters of porous layer, and heat loss value. The cellular combustion modes of the titanium powder layer were experimentally studied in the circular bath as the flat dish. The comparative analysis of theoretic and experimental results of combustion dynamics of cylindrical sample under cellular mode is given.

Keywords

filtration combustion cellular modes combustion stability porous media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Zik, Z. Olami, and E. Mozes, Phys. Rev. Lett. 81, 3868 (1998).CrossRefGoogle Scholar
  2. 2.
    O. Zik and E. Moses, Proc. Combust. Inst. 27, 2525 (1998).CrossRefGoogle Scholar
  3. 3.
    A. P. Aldushin and B. Sh. Braverman, Russ. J. Phys. Chem. B 4, 788 (2010).CrossRefGoogle Scholar
  4. 4.
    A. P. Aldushin and T. P. Ivleva, Dokl. Phys. Chem. 451, 157 (2013).CrossRefGoogle Scholar
  5. 5.
    L. Kagan and G. Sivashinsky, Combust. Theory, Model. 12, 269 (2008).CrossRefGoogle Scholar
  6. 6.
    A. G. Merzhanov and I. P. Borovinskaya, Dokl. Akad. Nauk SSSR 204, 366 (1972).Google Scholar
  7. 7.
    A. P. Aldushin and A. G. Merzhanov, Propagation of Heat Waves in Heterogeneous Environments (Nauka, Novosibirsk, 1988), p. 9 [in Russian].Google Scholar
  8. 8.
    N. I. Ozerkovskaya, A. N. Firsov, and K. G. Shkadinskii, Combust. Explos., Shock Waves 46, 515 (2010).CrossRefGoogle Scholar
  9. 9.
    S. V. Kostin, and K. G. Shkadinskii, Dokl. Phys. 55, 533 (2010).CrossRefGoogle Scholar
  10. 10.
    S. V. Kostin, P. M. Krishenik, N. I. Ozerkovskaya, A. N. Firsov, and K. G. Shkadinskii, Combust. Explos., Shock Waves 48, 1 (2012).CrossRefGoogle Scholar
  11. 11.
    S. V. Kostin, P. M. Krishenik, and K. G. Shkadinskii, Fiz. Goreniya Vzryva 50 (5), 58 (2014).Google Scholar
  12. 12.
    S. V. Kostin, P. M. Krishenik, and K. G. Shkadinskii, Russ. J. Phys. Chem. B 34, 385 (2015).CrossRefGoogle Scholar
  13. 13.
    P. M. Krishenik, S. A. Rogachev, and K. G. Shkadinskii, Russ. J. Phys. Chem. B 33, 172 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. M. Krishenik
    • 1
    Email author
  • S. V. Kostin
    • 1
  • N. I. Ozerkovskaya
    • 1
  • K. G. Shkadinskii
    • 2
  1. 1.Merzhanov Institute of Structural MacrokineticsRussian Academy of SciencesChenogolovkaRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChenogolovkaRussia

Personalised recommendations