Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 165–169 | Cite as

Mixing of Biodegradable Polymeric Solutions under Ultrasonic Dispersion and Microwave Heating Conditions

  • V. N. GorshenevEmail author
Chemical Physics of Polymer Materials


A method using ultrasonic dispersion and thermally stimulated microwave heating is proposed to mix solutions and suspensions. Some results of the mixing of biodegradable polymers in chloroform with aqueous suspensions of natural polymers are presented. The mixing of a polymeric solution with a magnetic liquid is considered. It is established that the proposed method allows the mixing of polymeric suspensions of a different nature for the construction of tissue engineering structures.


biodegradable polymers tissue engineering structures ultrasonic dispersion microwave heating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kh. Karapetyants, Chemical Thermodynamics (Khimiya, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    Biomedical Nanostructures, Ed. by K. E. Gonsalves, C. Halberstadt, C. T. Laurencin, and L. Nair (Wiley, New York, 2007; BINOM. Laboratoriya Znanii, Moscow, 2015).Google Scholar
  3. 3.
    A. V. Popkov, Genii Ortoped., No. 3, 94 (2014).Google Scholar
  4. 4.
    V. B. Akopyan, and Yu. A. Ershov, Principles of the Interaction of Ultrasound with Biological Objects (Yurait, Moscow, 2016), p. 223 [in Russian].Google Scholar
  5. 5.
    V. N. Gorshenev, A. T. Teleshev, Yu. A. Ershov, et al., RF Patent No. 2482880, Byull. Izobret., No. 15 (2013).Google Scholar
  6. 6.
    V. N. Gorshenev, A. T. Teleshev, V. V. Kolesov, V. B. Akopyan, and E. S. Budoragin, RF Patent No. 2631594 (2017).Google Scholar
  7. 7.
    V. N. Gorshenev, A. T. Teleshev, V. V. Kolesov, et al., RF Patent No. 2626355 (2017).Google Scholar
  8. 8.
    L. A. Smirnova, A. E. Mochalova, N. E. Tsverova, et al., RF Patent No. 2540468 (2006).Google Scholar
  9. 9.
    A. L. Iordanskii, S. Z. Rogovina, and A. A. Berlin, Obz. Zh. Khim. 3, 129 (2013).Google Scholar
  10. 10.
    A. E. Ivanov and V. P. Zubov, Russ. Chem. Rev. 85, 565 (2016).CrossRefGoogle Scholar
  11. 11.
    P. M. Larionov, M. A. Sadovoi, A. G. Samokhin, et al., Khirurg. Pozvon., No. 3, 77 (2014).Google Scholar
  12. 12.
    D. S. Kuznetsova, P. S. Timashev, V. N. Bagratashvili, and E. V. Zagainova, Sovrem. Tekhnol. Med. 6, 201 (2014).Google Scholar
  13. 13.
    V. P. Tereshchenko, P. M. Larionov, I. A. Kirilova, M. A. Sadovoi, and E. V. Mamonova, Khirurg. Pozvon. 13 (1), 72 (2016).CrossRefGoogle Scholar
  14. 14.
    A. B. Shipovskaya, N. V. Ostrovskii, Yu. E. Sal’kovskii, et al., RF Patent No. 2468129 (2010).Google Scholar
  15. 15.
    V. N. Kuleznev, Blends of Polymers (Znanie, Moscow, 1984) [in Russian].Google Scholar
  16. 16.
    V. N. Gorshenev, Yu. A. Ershov, A. T. Teleshev, et al., Med. Tekh., No. 1, 30 (2014).Google Scholar
  17. 17.
    V. I. Filippov, and A. A. Kuznetsov, in Proceedings of the 1st Symposium on Application of Biomagnetic Carriers in Medicine (IBKhF RAN, Moscow, 2002).Google Scholar
  18. 18.
    I. Shtilman, J. Sib. Fed. Univ., Biol. 8, 113 (2015).CrossRefGoogle Scholar
  19. 19.
    A. I. Suvorova, I. S. Tyukova, and E. I. Trufanova, Russ. Chem. Rev. 69, 451 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations