Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 156–164 | Cite as

Potential of Carbon, Silicon, Boron Nitride and Aluminum Phosphide Nanocages as Anodes of Lithium, Sodium and Potassium Ion Batteries: A DFT Study

  • Zhihua Chen
  • Zehui ShaoEmail author
  • Muhammad Kamran Siddiqui
  • Waqas Nazeer
  • Meysam NajafiEmail author
Electric and Magnetic Properties of Materials
  • 12 Downloads

Abstract

In this study, the potential of boron nitride (B21N21), aluminum phosphide (Al21P21), carbon (C24) and silicon (Si24) nanocages as anode electrodes of Lithium-ion (Li-ion), Sodium-ion (Na-ion) and Potassium-ion (K-ion) batteries has been investigated. The effects of halogen adoption of studied nanocages on ability of metal-ion batteries have been examined. Results show that the Al21P21 nanocage as anode electrode in metal-ion batteries has higher potential than B21N21, C24 and Si24 nanocages. It’s found that the K-ion battery has higher cell voltage and higher performance than Li-ion and Na-ion batteries; the halogen adoption of studied nanocages increases the cell voltage of metal-ion batteries; the Fluorine F-doped metal-ion batteries have higher cell voltage than Chlorine Cl- and Bromine Br-doped metal-ion batteries. Finally, the F-doped Al20P21 was proposed as novel anode electrode in K-ion battery with the highest performance.

Keywords

battery nanocage adoption voltage anode and halogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, Adv. Funct. Mater. 23, 947 (2013).CrossRefGoogle Scholar
  2. 2.
    Z. K. Ghouri, and A. Zahoor, Superlatt. Microstruct. 90, 184 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Barker, M. Y. Saidi, and J. L. Swoyer, Electrochem. Solid-State Lett. 6, 1 (2003).CrossRefGoogle Scholar
  4. 4.
    D. Er, J. Li, and M. Naguib, ACS Appl. Mater. Interfaces 6, 11173 (2014).CrossRefGoogle Scholar
  5. 5.
    P. Hu, X. Wang, and T. Wang, Adv. Sci. 3, 1600112 (2016).CrossRefGoogle Scholar
  6. 6.
    P. Hu, X. Wang, and J. Ma, Z. Zhang, Nano Energy 26, 382 (2016).CrossRefGoogle Scholar
  7. 7.
    V. Palomares, P. Serras, and I. Villaluenga, Energy Environ. Sci. 5, 5884 (2012).CrossRefGoogle Scholar
  8. 8.
    B. J. Landi, M. J. Ganter, and C. D. Cress, Energy Environ. Sci. 2, 638 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Beheshtian, and A. A. Peyghan, Struct. Chem. 23, 1567 (2012).CrossRefGoogle Scholar
  10. 10.
    A. A. Salari, Inorg. Chim. Acta 456, 18 (2017).CrossRefGoogle Scholar
  11. 11.
    O. Bariş Malcioğlu, and S. Erkoç, J. Mol. Graphics Model. 23, 367 (2005).CrossRefGoogle Scholar
  12. 12.
    Z. Bagheri, and A. A. Peyghan, Comput. Theor. Chem. 1008, 20 (2013).CrossRefGoogle Scholar
  13. 13.
    N. L. Hadipour, and A. Ahmadi Peyghan, J. Phys. Chem. C 119, 6398 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Khataee, G. Bayat, and J. Azamat, J. Mol. Graphics Model. 71, 176 (2017).CrossRefGoogle Scholar
  15. 15.
    A. A. Peyghan, S. F. Rastegar, and N. L. Hadipour, Phys. Lett. A 378, 2184 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Beheshtian, A. A. Peyghan, and M. Noei, Sens. Actuators, B 181, 829 (2013).CrossRefGoogle Scholar
  17. 17.
    Z. Mahdavifar, J. Mol. Graphics Model. 54, 32 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Beheshtian and A. Ahmadi Peyghan, Phys. E (Amsterdam, Neth.) 44, 1963 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Beheshtian, A. Ahmadi Peyghan, and Z. Bagheri, J. Mol. Model. 19, 255 (2012).CrossRefGoogle Scholar
  20. 20.
    J. Beheshtian, Monatsh. Chem. 143, 1623 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Appl. Surf. Sci. 259, 631 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Beheshtian and H. Soleymanabadi, Appl. Surf. Sci. 268, 436 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Beheshtian and A. A. Peyghan, Comput. Theor. Chem. 992, 164 (2012).CrossRefGoogle Scholar
  24. 24.
    E. Vessally and S. Soleimani-Amiri, Appl. Surf. Sci. 396, 740 (2017).CrossRefGoogle Scholar
  25. 25.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Appl. Surf. Sci. 258, 8980 (2012).CrossRefGoogle Scholar
  26. 26.
    J. Beheshtian, A. A. Peyghan, and M. B. Tabar, Appl. Surf. Sci. 266, 182 (2013).CrossRefGoogle Scholar
  27. 27.
    A. A. Peyghan, M. Noei, and M. B. Tabar, J. Mol. Model. 19, 3007 (2013).CrossRefGoogle Scholar
  28. 28.
    W. Zhou, J. Zhou, J. Shen, and C. Ouyang, J. Phys. Chem. Solids 73, 245 (2012).CrossRefGoogle Scholar
  29. 29.
    M. Jeong, T. Ahn, H. Nara, and T. Momma, Nano Energy 28, 51 (2016).CrossRefGoogle Scholar
  30. 30.
    Q. Jiang, Z. Zhang, S. Yin, and Z. Guo, Appl. Surf. Sci. 379, 73 (2016).CrossRefGoogle Scholar
  31. 31.
    D. Shao, D. Tang, J. Yang, and Y. Li, J. Power Sources 297, 344 (2015).CrossRefGoogle Scholar
  32. 32.
    P. Subalakshmi and A. Sivashanmugam, J. Alloys Compd. 690, 523 (2017).CrossRefGoogle Scholar
  33. 33.
    B. Chen, S. Chu, R. Cai, S. Wei, and R. Hu, Comput. Mater. Sci. 123, 44 (2016).CrossRefGoogle Scholar
  34. 34.
    A. A. Peyghan and M. Noei, J. Mex. Chem. Soc. 58, 46 (2014).Google Scholar
  35. 35.
    A. Gurung and R. Naderi, Electrochim. Acta 211, 720 (2016).CrossRefGoogle Scholar
  36. 36.
    S. W. Lee and N. Yabuuchi, Nat. Nanotechnol. 5, 531 (2010).CrossRefGoogle Scholar
  37. 37.
    M. Li, Y.-J. Liu, and J.-X. Zhao, Appl. Surf. Sci. 345, 337 (2015).CrossRefGoogle Scholar
  38. 38.
    L. Qie, W. M. Chen, and Z. H. Wang, Adv. Mater. 24, 2047 (2012).CrossRefGoogle Scholar
  39. 39.
    Z.-S. Wu, W. Ren, L. Xu, and F. Li, ACS Nano 5, 5463 (2011).CrossRefGoogle Scholar
  40. 40.
    Y. Liu, V. I. Artyukhov, and M. Liu, J. Phys. Chem. Lett. 4, 1737 (2013).CrossRefGoogle Scholar
  41. 41.
    R. P. Hardikar, D. Das, and S. S. Han, Phys. Chem. Chem. Phys. 16, 16502 (2014).CrossRefGoogle Scholar
  42. 42.
    A. A. Peyghan, M. Noei, and S. Yourdkhani, Superlatt. Microstruct. 59, 115 (2013).CrossRefGoogle Scholar
  43. 43.
    X. Ouyang, M. Lei, S. Shi, C. Luo, and D. Liu, J. Alloys Compd. 476, 462 (2009).CrossRefGoogle Scholar
  44. 44.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Struct. Chem. 24, 1565 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Shi, P. Lu, Z. Liu, Y. Qi, and L. G. Hector, J. Am. Chem. Soc. 134, 15476 (2012).CrossRefGoogle Scholar
  46. 46.
    A. A. Peyghan, A. Soltani, and A. A. Pahlevani, Appl. Surf. Sci. 270, 25 (2013).CrossRefGoogle Scholar
  47. 47.
    S. Shi, C. Ouyang, M. Lei, and W. Tang, J. Power Sources 171, 908 (2007).CrossRefGoogle Scholar
  48. 48.
    A. Ahmadi, J. Beheshtian, and M. Kamfiroozi, J. Mol. Model. 18, 1729 (2012).CrossRefGoogle Scholar
  49. 49.
    S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, and W. Ju, Chin. Phys. B 25, 18212 (2015).CrossRefGoogle Scholar
  50. 50.
    A. Soltani, A. Ahmadi Peyghan, and Z. Bagheri, Phys. E (Amsterdam, Neth.) 48, 176 (2013).CrossRefGoogle Scholar
  51. 51.
    L. Safari, E. Vessally, A. Bekhradnia, and L. Edjlali, Thin Solid Films 623, 157 (2017).CrossRefGoogle Scholar
  52. 52.
    A. A. Peyghan, M. T. Baei, and M. Moghimi, Comput. Theor. Chem. 997, 63 (2012).CrossRefGoogle Scholar
  53. 53.
    D. Golberg, Y. Bando, and Y. Huang, ACS Nano 4, 2979 (2010).CrossRefGoogle Scholar
  54. 54.
    X. Chen, P. Wu, M. Rousseas, and D. Okawa, J. Am. Chem. Soc. 131, 890 (2009).CrossRefGoogle Scholar
  55. 55.
    J. Beheshtian, M. Kamfiroozi, and Z. Bagheri, Chin. J. Chem. Phys. 25, 60 (2012).CrossRefGoogle Scholar
  56. 56.
    Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).CrossRefGoogle Scholar
  57. 57.
    J. Andzelm and C. Kolmel, J. Chem. Phys. 103, 9312 (1995).CrossRefGoogle Scholar
  58. 58.
    L. H. Gan and J. Q. Zhao, Phys. E (Amsterdam, Neth.) 41, 1249 (2009).CrossRefGoogle Scholar
  59. 59.
    S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).CrossRefGoogle Scholar
  60. 60.
    L. Ma, J. M. Zhang, K. W. Xu, and V. Ji, Appl. Surf. Sci. 343, 121 (2015).CrossRefGoogle Scholar
  61. 61.
    J. Beheshtian and H. Soleymanabadi, J. Mol. Model. 18, 2343 (2012).CrossRefGoogle Scholar
  62. 62.
    J. Beheshtian, Z. Bagheri, and M. Kamfiroozi, Struct. Chem. 23, 653 (2012).CrossRefGoogle Scholar
  63. 63.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Comput. Mater. Sci. 62, 71 (2012).CrossRefGoogle Scholar
  64. 64.
    R. R. Q. Freitas and G. K. Gueorguiev, Chem. Phys. Lett. 583, 119 (2013).CrossRefGoogle Scholar
  65. 65.
    M. T. Baei, A. A. Peyghan, and Z. Bagheri, Chin. Chem. Lett. 23, 965 (2012).CrossRefGoogle Scholar
  66. 66.
    M. Baei and H. Mohammadian, Bulg. Chem. Commun 46, 735 (2014).Google Scholar
  67. 67.
    J. Beheshtian, Z. Bagheri, and M. Kamfiroozi, J. 42, 1400 (2011).Google Scholar
  68. 68.
    J. Beheshtian, Z. Bagheri, and M. Kamfiroozi, J. Mol. Model. 18, 2653 (2012).CrossRefGoogle Scholar
  69. 69.
    J. Hosseini, A. Rastgou, and R. Moradi, J. Mol. Liq. 225, 913 (2017).CrossRefGoogle Scholar
  70. 70.
    L. Saw, Y. Ye, and A. Tay, Appl. Therm. Eng. 73, 154 (2014).CrossRefGoogle Scholar
  71. 71.
    T. Koopmans, Phys. (Amsterdam, Neth.) 1, 104 (1934).CrossRefGoogle Scholar
  72. 72.
    P. Politzer and F. Abu-Awwad, Theor. Chem. Acc. 99, 83 (1998).CrossRefGoogle Scholar
  73. 73.
    H. Sebastien, J. Electron. Spectosc. Relat. Phenom. 123, 345 (2002).CrossRefGoogle Scholar
  74. 74.
    A. Szabo, and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, New York, 1990), Chap. 3.Google Scholar
  75. 75.
    J. Michl and V. Bonačič-Koutecky, in Electronic Aspects of Organic Photochemistry (Wiley, Chichester, 1990), p. 35.Google Scholar
  76. 76.
    W. J. Hehre, P. V. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley, New York, 1986), p. 24.Google Scholar
  77. 77.
    G. Zhang, and C. B. Musgrave, J. Phys. Chem. A 111, 1554 (2007).CrossRefGoogle Scholar
  78. 78.
    M. D. Esrafili and N. Saeidi, Chem. Phys. Lett. 671, 49 (2017).CrossRefGoogle Scholar
  79. 79.
    M. D. Esrafili and R. Nurazar, Surf. Sci. 626, 44 (2014).CrossRefGoogle Scholar
  80. 80.
    M. D. Esrafili, N. Saeidi, Phys. E (Amsterdam, Neth.) 74, 382 (2015).CrossRefGoogle Scholar
  81. 81.
    M. D. Esrafili, P. Nematollahi, and H. Abdollahpour, Appl. Surf. Sci. 378, 418 (2016).CrossRefGoogle Scholar
  82. 82.
    M. D. Esrafili, P. Nematollahi, and R. Nurazar, Superlatt. Microstruct. 92, 60 (2016).CrossRefGoogle Scholar
  83. 83.
    M. D. Esrafili and R. Nurazar, Comput. Mat. Sci. 92, 172 (2014).CrossRefGoogle Scholar
  84. 84.
    L. Song, L. Ci, H. Lu, and P. B. Sorokin, Nano Lett. 10, 3209 (2010).CrossRefGoogle Scholar
  85. 85.
    Z. Bagheri, Appl. Surf. Sci. 383, 294 (2016).CrossRefGoogle Scholar
  86. 86.
    K. Nejati, A. Hosseinian, A. Bekhradnia, E. Vessally, and L. Edjlali, J. Mol. Graph. Mod. 74, 1 (2017).CrossRefGoogle Scholar
  87. 87.
    A. Hosseinian, S. Soleimani, S. Arshadi, E. Vessally, and L. Edjlali, Phys. Lett. A 381, 2010 (2017).CrossRefGoogle Scholar
  88. 88.
    M. T. Baei, A. A. Peyghan, and Z. Bagheri, Chin. Chem. Lett. 23, 965 (2012).CrossRefGoogle Scholar
  89. 89.
    J. Hosseini, A. Rastgou, and R. Moradi, J. Mol. Liq. 225, 913 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Computing Science and TechnologyGuangzhou UniversityGuangzhouChina
  2. 2.Department of MathematicsComsats University IslamabadIslamabadPakistan
  3. 3.Department of Mathematics, Division of Science and TechnologyUniversity of Education LahoreLahorePakistan
  4. 4.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations