Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 101–106 | Cite as

Environmental Characteristics of Infrared Burners with a Catalytic Radiation Screen

  • N. Ya. VasilikEmail author
  • A. V. Porsin
  • V. M. Shmelev
Combustion, Explosion, and Shock Waves
  • 6 Downloads

Abstract

The possibility of providing an appreciable decrease in carbon monoxide concentrations in products due to the combustion of natural gas-air mixtures in infrared burners by installing a radiation gauze screen with a catalytic Pd-Ce/Al2O3 coating over the matrix is demonstrated. When permeable matrices with radiation gauze screens with and without catalytic coatings are used, the concentration of nitrogen oxides in combustion products was less than 20 ppm within a range of specific combustion powers from 20 to 100 W/cm2. The use of a screen with a catalytic coating provides record low CO concentrations in combustion products at a level of 3–5 ppm within a range of specific combustion powers from 30 to 60 W/cm2. The catalytic coating on the gauze screen that is developed retains its serviceability through multiple cycles of heating to temperatures of 1400 K.

Keywords

natural gas combustion infrared burner permeable matrix radiation screen catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Tokarev, Infrared Gas Burners and their Application in Industry (RosZITLP, Omsk, 2009) [in Russian].Google Scholar
  2. 2.
    I. Malicoa and M. A. Mujeebu, J. Adv. Thermofluid Res. 1, 50 (2015).Google Scholar
  3. 3.
    V. Shmelev, Combust. Sci. Technol. 186, 943 (2014). doi  https://doi.org/10.1080/00102202.2014.890601 CrossRefGoogle Scholar
  4. 4.
    N. Ya. Vasilik and V. M. Shmelev, Russ. J. Phys. Chem. B 10, 774 (2016).CrossRefGoogle Scholar
  5. 5.
    G. K. Boreskov, E. A. Levitskii, and Z. R. Ismagilov, Zh. Vseross. Khim. Ob-va Mendeleeva 29 (4), 19 (1984).Google Scholar
  6. 6.
    A. V. Porsin, A. V. Kulikov, I. K. Dalyuk, et al., J. Chem. Eng. J 282, 233 (2015).CrossRefGoogle Scholar
  7. 7.
    A. V. Kulikov, A. N. Zagoruiko, S. A. Lopatin, et al., Nauch. Vestn. NGTU 58, 257 (2015).Google Scholar
  8. 8.
    Z. R. Ismagilov and M. A. Kerzhentsev, Catal. Rev. Sci. Eng. 32, 51 (1990).CrossRefGoogle Scholar
  9. 9.
    C. H. Bartholomew, Appl. Catal., A 212, 17 (2001).CrossRefGoogle Scholar
  10. 10.
    P. Euzen, J.-H. L. Gal, B. Rebours, et al., Catal. Today, No. 47, 19 (1999).Google Scholar
  11. 11.
    M. Machida, H. Taniguchi, T. Kijimaa, et al., J. Mater. Chem. 8, 781 (1998).CrossRefGoogle Scholar
  12. 12.
    A. V. Porsin, A. V. Kulikov, V. N. Rogozhnikov, et al., Catal. Today, No. 273, 213 (2016).Google Scholar
  13. 13.
    N. Ya. Vasilik and V. M. Shmelev, Gorenie Vzryv 10 (2), 4 (2017).Google Scholar
  14. 14.
    V. M. Shmelev, Russ. J. Phys. Chem. B 4, 593 (2010).CrossRefGoogle Scholar
  15. 15.
    N. Ya. Vasilik and V. M. Shmelev, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2015), Iss. 8, No. 1, p. 63 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. Ya. Vasilik
    • 1
    Email author
  • A. V. Porsin
    • 2
  • V. M. Shmelev
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations