Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 86–95 | Cite as

Regularities and Mechanism of Formation of Aluminides in the TiH2-ZrH2-Al System

  • G. N. Muradyan
  • S. K. DolukhanyanEmail author
  • A. G. Aleksanyan
  • O. P. Ter-Galstyan
  • N. L. Mnatsakanyan
Combustion, Explosion, and Shock Waves
  • 6 Downloads

Abstract

The results of our study of the formation of aluminides in the Ti-Al-Zr system by the hydride cycle (HC) method were presented. The characteristics of aluminides (phase composition, density, and absorption properties) were found to depend on the ratios of titanium and zirconium hydrides and aluminum powders, pressure during compaction of the reaction mixture, and dehydrogenation and sintering modes. A series of single- and double-phase aluminides based on titanium and zirconium were synthesized. Some of the synthesized aluminides reacted with hydrogen without preliminary grinding in the self-propagating high-temperature synthesis (SHS) mode, forming reversible hydrides. The concentration triangle of the Ti-Al-Zr system was constructed. The HC method for the synthesis of aluminides based on titanium and zirconium has significant advantages over the conventional techniques: relatively low temperatures (no more than 1000°C); reaction time ~30–60 min; one-stage formation of single-phase aluminides. The single-phase aluminides Ti0.25Al0.75, Zr0.25Al0.75, Ti0.05Zr02Al0.75, and others were synthesized at temperatures of 650–670°C.

Keywords

hydride cycle (HC) method self-propagating high-temperature synthesis (SHS) titanium-zirconium aluminides metal hydrides hydrogenation-dehydrogenation intermetallic compounds alloys of refractory metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Tretyachenko, in Light Metal Systems. Al-Ti-Zr (Aluminium-Titanium-Zirconium), Ed. by G. Effenberg and S. V. Ilyenko, Vol. 11A4 of Landolt-Börnstein-Group IV Physical Chemistry (Springer, Heidelberg, 2005), p. 54.Google Scholar
  2. 2.
    Kai-li Lu, Feng Yang, Zhi-yun Xie, et al., Trans. Non-ferr. Met. Soc. China 26, 3052 (2016).CrossRefGoogle Scholar
  3. 3.
    D. Tanda, T. Tanabe, R. Tamura, et al., Mater. Sci. Eng. 387, 991 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Miyajima, K. Ishikawa, and K. Aoki, Mater. Trans. 43, 1085 (2002).CrossRefGoogle Scholar
  5. 5.
    K. E. Knipling, D. C. Dunand, and D. N. Seidman, Acta Mater. 56, 1182 (2008).CrossRefGoogle Scholar
  6. 6.
    M. V. Karpets, Yu. V. Milman, O. M. Barabash, et al., Intermetallics 11, 241 (2003).CrossRefGoogle Scholar
  7. 7.
    O. Dezellus, B. Gardiola, and J. Andrieux, J. Phase Equilib. Difus. 35, 120 (2014).CrossRefGoogle Scholar
  8. 8.
    G. J. Fan, X. P. Song, M. X. Quan, et al., Mater. Sci. Eng., A, No. 231, 111 (1997).Google Scholar
  9. 9.
    S. K. Dolukhanyan, A. G. Aleksanyan, O. P. Ter-Galstyan, V. Sh. Shekhtman, M. K. Sakharov, and G. E. Abrosimova, Russ. J. Phys. Chem. B 1, 563 (2007).CrossRefGoogle Scholar
  10. 10.
    H. G. Hakobyan, A. G. Aleksanyan, S. K. Dolukhanyan, et al., Int. J. SHS 19, 49 (2010).Google Scholar
  11. 11.
    A. G. Aleksanyan, S. K. Dolukhanyan, V. Sh. Shekhtman, et al., J. Alloys Compd. 509, 786 (2011).CrossRefGoogle Scholar
  12. 12.
    A. G. Aleksanyan, S. K. Dolukhanyan, V. Sh. Shekhtman, et al., Int. J. Hydrogen Energy 37, 14234 (2012).CrossRefGoogle Scholar
  13. 13.
    S. K. Dolukhanyan, A. G. Aleksanyan, O. P. Ter-Galstyan, et al., Int. J. Self-Propag. High-Temp Synth. 23, 78 (2014).CrossRefGoogle Scholar
  14. 14.
    S. K. Dolukhanyan, O. P. Ter-Galstyan, A. G. Aleksanyan, A. G. Hakobyan, N. L. Mnatsakanyan, and V. Sh. Shekhtman, Russ. J. Phys. Chem. B 9, 702 (2015).CrossRefGoogle Scholar
  15. 15.
    G. N. Muradyan, Arm. Khim. Zh. 69, 416 (2016).Google Scholar
  16. 16.
    S. K. Dolukhanyan, O. P. Ter-Galstyan, A. G. Aleksanyan, G. N. Muradyan, and N. L. Mnatsakanyan, Russ. J. Phys. Chem. B 11, 272 (2017).CrossRefGoogle Scholar
  17. 17.
    S. K. Dolukhanyan, in Self-Propagating High-Temperature Synthesis of Materials, Ed. by A. A. Borisov, L. de Luca, and A. G. Merzhanov, Vol. 5 of Combustion Science and Technology Book Series (Taylor Francis, New York, 2002), p. 219.Google Scholar
  18. 18.
    V. Sh. Shekhtman, S. K. Dolukhanyan, A. G. Aleksanyan, et al., Int. J. Hydrogen Energy 26, 435 (2001).CrossRefGoogle Scholar
  19. 19.
    C. Ravi and R. Asokamani, Bull. Mater. Sci. 26, 97 (2003).CrossRefGoogle Scholar
  20. 20.
    X. F. Chen, R. D. Reviere, B. F. Oliver, et al., Scr. Met. Mater. 27, 45 (1992).CrossRefGoogle Scholar
  21. 21.
    R. Kainuma, Y. Fujita, H. Mitsui, et al., Intermetallics 8, 855 (2000).CrossRefGoogle Scholar
  22. 22.
    E. A. Popova, A. B. Shubin, P. V. Kotenkov, E. A. Pastukhov, L. E. Bodrova, and O. M. Fedorova, Russ. Metall. 2012, 357 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. N. Muradyan
    • 1
  • S. K. Dolukhanyan
    • 1
    Email author
  • A. G. Aleksanyan
    • 1
  • O. P. Ter-Galstyan
    • 1
  • N. L. Mnatsakanyan
    • 1
  1. 1.Nalbandyan Institute of Chemical PhysicsNational Academy of Sciences of ArmeniaYerevanArmenia

Personalised recommendations