Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 107–111 | Cite as

Instability of Solid Propellant Combustion Waves with a Subsurface Temperature Maximum

  • V. G. Krupkin
  • G. N. MokhinEmail author
Combustion, Explosion, and Shock Waves
  • 7 Downloads

Abstract

Combustion modes with a subsurface maximum temperature may occur in the burning of homogeneous energetic materials, such as solid propellants and explosives. In this paper, we analyzed the stability of a stationary combustion wave with a temperature maximum in the condensed phase. We showed that the boundary of stability corresponds to the merging of a stable and unstable solution while the combustion waves with a subsurface temperature maximum can be unsteady only. A dimensionless criterion of the transition to a pulsating mode, which is equal to the ratio of two times: the time of the adiabatic thermal explosion of the subsurface reactive layer and the time of substance depletion due to the combustion front motion, is given. The possible role of a thermal explosion of hotspots in the heated layer during the transition to a hotspot-pulsating combustion mode is discussed.

Keywords

combustion of solid propellants combustion instability ignition hot spots critical phenomena combustion theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Novozhilov, Unsteady Burning Solid Rocket Fuels (Nauka, Moscow, 1973) [in Russian].Google Scholar
  2. 2.
    Ya. B. Zel’dovich, O. I. Leipunskii, and V. B. Librovich, Theory of Nonstationary Combustion of Powder (Nauka, Moscow, 1975) [in Russian].Google Scholar
  3. 3.
    L. K. Gusachenko and V. E. Zarko, Russ. J. Phys. Chem. B 2, 83 (2008).CrossRefGoogle Scholar
  4. 4.
    V. N. Marshakov, V. G. Krupkin, and G. N. Mokhin, in Zel’dovich Memorial: Accomplishments in the Combustion Science in the Last Decade, Ed. by A. A. Borisov and S. M. V. Frolov (Torus, Moscow, 2014), Vol. 2, p. 127.Google Scholar
  5. 5.
    V. G. Krupkin and G. N. Mokhin, Gorenie Vzryv 8, 138 (2015).Google Scholar
  6. 6.
    B. V. Novozhilov, Russ. J. Phys. Chem. B 9, 43 (2015).CrossRefGoogle Scholar
  7. 7.
    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, et al., Mathematical Theory of Combustion and Explosions (Nauka, Moscow, 1980; Plenum, New York, 1985).Google Scholar
  8. 8.
    L. K. Gusachenko, V. E. Zarko, and A. D. Rychkov, Fiz. Goreniya Vzryva 33, 43 (1997).Google Scholar
  9. 9.
    A. A. Zenin and B. V. Novozhilov, Fiz. Goreniya Vzryva 9, 246 (1973).Google Scholar
  10. 10.
    V. N. Marshakov, Khim. Fiz. 6, 530 (1987).Google Scholar
  11. 11.
    A. S. Mukasyan and A. S. Rogachev, Prog. Energy Combust. Sci. 34, 377 (2008).CrossRefGoogle Scholar
  12. 12.
    A. R. Kasimov, L. M. Faria, and R. R. Rosales, Phys. Rev. Lett. 110, 104104 (2013).CrossRefGoogle Scholar
  13. 13.
    K. G. Shkadinsky, et al., in Zel’dovich Memorial: Accomplishments in the Combustion Science in the Last Decade, Ed. by A. A. Borisov and S. M. V. Frolov (Torus, Moscow, 2014), Vol. 1, p. 89.Google Scholar
  14. 14.
    A. G. Merzhanov and A. S. Mukas’yan, Solid Flame Combustion (Torus, Moscow, 2007) [in Russian].Google Scholar
  15. 15.
    V. G. Krupkin and G. N. Mokhin, Combustion and Explosion, Ed. by S. M. Frolov (Torus, Moscow, 2014), p. 293 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations