Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 16–24 | Cite as

Morphology of Two-Component Nanocatalysts Based on Platinum and Organoboron Nanoparticles

  • V. A. KharitonovEmail author
  • M. V. Grishin
  • S. A. Ulasevich
  • S. Yu. Sarvadii
  • B. R. Shub
Kinetics and Mechanism of Chemical Reactions Catalysis
  • 6 Downloads

Abstract

The morphology of two-component nanocatalysts formed by organoboron nanoparticles and platinum nanoparticles deposited on the surface of highly orientated pyrolytic graphite (HOPG) was determined by scanning tunneling microscopy and atomic force microscopy. The electron structure and conductivity of the nanoparticles of the coatings were determined by scanning tunneling spectroscopy.

Keywords

scanning tunneling microscopy and spectroscopy atomic force microscopy carboranes platinum nanostructured coatings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Yu, M. D. Porosoff, and J. G. Chen, Chem. Rev. 112, 5780 (2012).CrossRefGoogle Scholar
  2. 2.
    J. G. Chen, C. A. Menning, and M. B. Zellner, Surf. Sci. Rep. 63, 201 (2008).CrossRefGoogle Scholar
  3. 3.
    B. R. Cuenya, Thin Solid Films 518, 3127 (2010).CrossRefGoogle Scholar
  4. 4.
    B. R. Cuenya and F. Behafarid, Surf. Sci. Rep. 70, 135 (2015).CrossRefGoogle Scholar
  5. 5.
    V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).CrossRefGoogle Scholar
  6. 6.
    B. Hammer and J. K. Nørskov, Adv. Catal. 45, 71 (2000).Google Scholar
  7. 7.
    A. M. Goda, M. Neurock, M. A. Barteau, and J. G. Chen, Surf. Sci. 602, 2513 (2008).CrossRefGoogle Scholar
  8. 8.
    N. A. Khan, M. B. Zellner, and J. G. Chen, Surf. Sci. 556, 87 (2004).CrossRefGoogle Scholar
  9. 9.
    L. E. Murillo, A. M. Goda, and J. G. Chen, J. Am. Chem. Soc. 129, 7101 (2007).CrossRefGoogle Scholar
  10. 10.
    R. Zheng, M. P. Humbert, Y. Zhu, and J. G. Chen, Catal. Sci. Technol. 1, 638 (2011).CrossRefGoogle Scholar
  11. 11.
    R. Zheng, Y. Zhu, and J. G. Chen, ChemCatChem 3, 578 (2011).CrossRefGoogle Scholar
  12. 12.
    X. M. Liu, J. R. Chen, S. L. Zhao, and X. J. Li, Chin. J. Catal. 26, 323 (2005).Google Scholar
  13. 13.
    G. J. Siri, J. M. Ramallo-Lopez, Casella, et al., Appl. Catal., A 278, 239 (2005).CrossRefGoogle Scholar
  14. 14.
    H. Ren, M. P. Humbert, C. A. Menning, et al., Appl. Catal., A 375, 303 (2010).CrossRefGoogle Scholar
  15. 15.
    D. A. Hansgen, D. G. Vlachos, and J. G. Chen, Nat. Chem. 2, 484 (2011).CrossRefGoogle Scholar
  16. 16.
    D. A. Hansgen, L. M. Thomanek, J. G. Chen, and D. G. Vlachos, J. Chem. Phys. 134, 184701 (2011).CrossRefGoogle Scholar
  17. 17.
    S. K. Singh and Q. A. Xu, Inorg. Chem. 49, 6148 (2010).CrossRefGoogle Scholar
  18. 18.
    T. Ma, Q. Fu, Y. Cui, et al., J. Catal. 31, 24 (2010).Google Scholar
  19. 19.
    T. Ma, Q. Fu, H. -Y. Su, et al., ChemPhysChem 10, 1013 (2009).CrossRefGoogle Scholar
  20. 20.
    R. Mu, Q. Fu, H. Liu, et al., Appl. Surf. Sci. 255, 7296 (2009).CrossRefGoogle Scholar
  21. 21.
    S. Y. Choung, M. Ferrandon, and T. Krause, Catal. Today 99, 257 (2005).CrossRefGoogle Scholar
  22. 22.
    Y. Sato, K. Terada, S. Hasegawa, T. Miyao, and S. Naito, Appl. Catal., A 296, 80 (2005).CrossRefGoogle Scholar
  23. 23.
    Q. Yu, W. Chen, Y. Li, M. Jin, and Z. Suo, Catal. Today 158, 324 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Kugai, J. T. Miller, N. Guo, and C. Song, J. Catal. 277, 46 (2011).CrossRefGoogle Scholar
  25. 25.
    L. Borko and L. Guczi, Top. Catal. 39, 34 (2006).CrossRefGoogle Scholar
  26. 26.
    K. Persson, A. Ersson, S. Colussi, A. Trovarelli, and S. G. Jaras, Appl. Catal., B 66, 175 (2006).CrossRefGoogle Scholar
  27. 27.
    K. Persson, K. Jansson, and S. G. Jaras, J. Catal. 245, 401 (2007).CrossRefGoogle Scholar
  28. 28.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 8, 416 (2014).CrossRefGoogle Scholar
  29. 29.
    V. N. Korchak, M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 9, 228 (2015).CrossRefGoogle Scholar
  30. 30.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 9, 596 (2015).CrossRefGoogle Scholar
  31. 31.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, S. A. Tsyganov and B. R. Shub, Russ. J. Phys. Chem. B 10, 538 (2016).CrossRefGoogle Scholar
  32. 32.
    A. K. Gatin, M. V. Grishin, S. Yu. Sarvadii, V. G. Slutskii, V. A. Kharitonov, and B. R. Shub, Nanotechnol. Russ. 11, 1 (2016).CrossRefGoogle Scholar
  33. 33.
    V. N. Korchak, M. V. Grishin, M. Ya. Bykhovskii, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, S. A. Tsyga-nov, and B. R. Shub, Russ. J. Phys. Chem. B 11, 932 (2017).CrossRefGoogle Scholar
  34. 34.
    A. K. Gatin, M. V. Grishin, S. Yu. Sarvadii, V. G. Slutskii, V. A. Kharitonov, B. R. Shub and A. I. Kulak, Kinet. Catal. 59, 196 (2018).CrossRefGoogle Scholar
  35. 35.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, et al., Khim. Fiz. 35 (10), 16 (2016).Google Scholar
  36. 36.
    J. G. Chen, C. A. Menning, and M. B. Zellner, Surf. Sci. Rep. 63, 201 (2008).CrossRefGoogle Scholar
  37. 37.
    D. J. O’Connor, B. A. Sexton, and R. C. Smart, Surface Analysis Methods in Materials Science, 2nd ed. (Springer, New York, 2003).CrossRefGoogle Scholar
  38. 38.
    R. I. Masel, Principles of Adsorption and Reaction on Solid Surfaces (Wiley, New York, 1996).Google Scholar
  39. 39.
    Z. Gai, J. Y. Howe, J. Guo, et al., Appl. Phys. Lett. 86, 023107 (2005).CrossRefGoogle Scholar
  40. 40.
    H. I. Abbott, A. Aumer, Y. Lei, Asokan, et al., J. Phys. Chem. C 114, 17099 (2010).CrossRefGoogle Scholar
  41. 41.
    E. Napetschnig, M. Schmid, and P. Varga, Surf. Sci. 601, 3233 (2007).CrossRefGoogle Scholar
  42. 42.
    F. Behafarid and B. R. Cuenya, Nano Lett. 11, 5290 (2011).CrossRefGoogle Scholar
  43. 43.
    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, N. N. Kolchenko, S. Yu. Sarvadii, and B. R. Shub, Nanotechnol. Russ. 11, 727 (2016).CrossRefGoogle Scholar
  44. 44.
    A. K. Santra, F. Yang, and D. W. Goodman, Surf. Sci. 548, 324 (2004).CrossRefGoogle Scholar
  45. 45.
    J. B. Park, J. S. Ratliff, S. Ma, and D. A. Chen, Surf. Sci. 600, 2913 (2006).CrossRefGoogle Scholar
  46. 46.
    R. J. Davies, M. Bowker, P. R. Davies, and D. J. Morgan, Nanoscale 5, 9018 (2013).CrossRefGoogle Scholar
  47. 47.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 63, 1696 (2014).CrossRefGoogle Scholar
  48. 48.
    Y. Yao, Q. Fu, Z. Wang, D. Tan, and X. Bao, J. Phys. Chem. C 114, 17069 (2010).CrossRefGoogle Scholar
  49. 49.
    J. R. Kitchin, N. A. Khan, M. A. Barteau, et al., Surf. Sci. 544, 295 (2003).CrossRefGoogle Scholar
  50. 50.
    A. K. Gatin, M. V. Grishin, A. A. Kirsankin, V. A. Khari-tonov, and B. R. Shub, Nanotechnol. Russ. 8, 36 (2013).CrossRefGoogle Scholar
  51. 51.
    A. A. Kirsankin, M. V. Grishin, S. Yu. Sarvadii, P. F. Zamota, and B. R. Shub, Russ. J. Phys. Chem. B 11, 521 (2017).CrossRefGoogle Scholar
  52. 52.
    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, A. A. Kirsankin, V. A. Kharitonov, and B. R. Shub, Russ. Chem. Bull. 62, 1525 (2013).CrossRefGoogle Scholar
  53. 53.
    M. Grishin, A. Gatin, V. Kharitonov, and B. Shub, Appl. Phys. Lett. 99, 133104 (2011).CrossRefGoogle Scholar
  54. 54.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, and D. A. Yavsin, Nanotechnol. Russ. 8, 850 (2015).CrossRefGoogle Scholar
  55. 55.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kol-chenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 63, 1696 (2014).CrossRefGoogle Scholar
  56. 56.
    J. Hrbek, F. M. Hoffmann, J. B. Park, et al., J. Am. Chem. Soc. 130, 17272 (2008).CrossRefGoogle Scholar
  57. 57.
    M. Valden, X. Lai, and D. W. Goodman, Science (Washington, DC, U. S.) 281, 1647 (1998).CrossRefGoogle Scholar
  58. 58.
    C. Lemire, R. Meyer, S. Shaikhutdinov, and H. J. Freund, Angew. Chem., Int. Ed. Engl. 43, 118 (2004).CrossRefGoogle Scholar
  59. 59.
    V. G. Slutskii, M. V. Grishin, V. A. Kharitonov, A. K. Gatin, B. R. Shub, and S. A. Tsyganov, Russ. J. Phys. Chem. B 7, 343 (2013).CrossRefGoogle Scholar
  60. 60.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 7, 383 (2013).CrossRefGoogle Scholar
  61. 61.
    S. Todorova, G. Kadinov, K. Tenchev, Y. Kalvachev, and V. Kostov-Kytin, J. Mater. Sci. 42, 3315 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Kharitonov
    • 1
    Email author
  • M. V. Grishin
    • 1
  • S. A. Ulasevich
    • 2
  • S. Yu. Sarvadii
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of General and Inorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations