Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 25–31 | Cite as

Intensification of Fast Chemical Processes at Interfaces of Two-Component Liquid Media in Tubular Turbulent Reactors

  • Al. Al. BerlinEmail author
  • S. A. Patlazhan
  • I. V. Kravchenko
  • K. Yu. Prochukhan
  • Yu. A. Prochukhan
Kinetics and Mechanism of Chemical Reactions Catalysis


The possibility of intensifying fast chemical processes at the interface of two-component liquid medium in a tubular turbulent reactor has been considered. A new application of the turbulent reactor for processes occurring at interfaces in two-component liquid systems has been found. It has been observed that the chemical reaction time abruptly decreases, and the physics of the process affects the direction of and conversion in the chemical reaction at a high (up to 100%) yield of desired products. The geometric characteristics of the reactor have been analyzed, and it has been shown that the dispersion of drops in the emulsion is most efficient at large angles of inclination of an obstruction to the flow and at minimal gaps in the convergent-divergent channel of the reactor. It has been demonstrated that the average perimeter of drops of the dispersion oscillates with time, which causes elongation and breakup of drops. In its turn, the latter influences the contact surface area of the emulsion and, significantly, the chemical reaction rate.


tubular turbulent reactor reaction time specific surface area dispersion intensification of chemical reaction turbulent flow emulsion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al. Al. Berlin, K. S. Minsker, and K. M. Dyumaev, New Unified Energy- and Resource-Saving High-Performance Technologies of High Ecological Purity Based on Tubular Turbulent Reactors (OAO NIITEKhIM, Moscow, 1996) [in Russian].Google Scholar
  2. 2.
    Al. Al. Berlin and K. S. Minsker, Fast Polymerization Processes (Gordon and Breach, Netherlands, 1996).Google Scholar
  3. 3.
    K. S. Minsker, A. A. Berlin, G. E. Zaikov, et al., Fast Liquid-Phase Processes in Turbulent Flows (VSP, Utrecht, Boston, 2004).CrossRefGoogle Scholar
  4. 4.
    V. P. Zakharov, Al. Al. Berlin, Yu. B. Monakov, et al., Physical and Chemical Bases of Fast Liquid-Phase Processes (Nauka, Moscow, 2008) [in Russian].Google Scholar
  5. 5.
    Al. Al. Berlin, R. Ya. Deberdeev, G. S. Dyakonov, et al., Fast Chemical Reactions in Turbulent Flows: Theory and Practice (Smithers Rapra Technol. of Shawbary, Shrewsbure, Shropshire, UK, 2013).Google Scholar
  6. 6.
    A. A. Konoplev, G. G. Aleksanyan, B. L. Rytov, and Al. Al. Berlin, Theor. Found. Chem. Eng. 49, 61 (2015).CrossRefGoogle Scholar
  7. 7.
    Al. Al. Berlin, K. Yu. Prochukhan, S. A. Patlazhan, et al., in Proceedings of the 5th International Conference-School on Chemical Technology ChT’16 (VolgGTU, Volgograd, 2016), Vol. 1, p. 30.Google Scholar
  8. 8.
    K. Yu. Prochukhan, G. G. Aleksanyan, Yu. A. Prochukhan, et al., Khim. Tekhnol. Topl. Masel, No. 2, 16 (1999).Google Scholar
  9. 9.
    E. R. Chukaeva, K. Yu. Prochukhan, and Yu. A. Prochukhan, Neftegaz. Delo 13, 119 (2015).Google Scholar
  10. 10.
    Ya. V. Idogova, A. V. Vashchenko, K. Yu. Prochukhan, Yu. A. Prochukhan, Russ. J. Appl. Chem. 87, 1948 (2014).CrossRefGoogle Scholar
  11. 11.
    J. U. Brackbill, D. B. Kothe, and C. Zemach, J. Comp. Phys. 100, 335 (1992).CrossRefGoogle Scholar
  12. 12.
    H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput. Phys. 12, 620 (1998).CrossRefGoogle Scholar
  13. 13.
  14. 14.
    S. A. Patlazhan, I. V. Kravchenko, R. Muller, Y. Hoarau, Y. Remond, and Al. Al. Berlin, Dokl. Phys. 62, 145 (2017).CrossRefGoogle Scholar
  15. 15.
    I. V. Kravchenko, S. A. Patlazhan, R. Muller, et al., J. Phys.: Conf. Ser. 774, 012026 (2016).Google Scholar
  16. 16.
    K. Yu. Prochukhan, C. C. Kobzhev, E. B. Shirokikh, et al., Vestn. Tekhnol. Univ. 18 (13), 51 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Al. Al. Berlin
    • 1
    Email author
  • S. A. Patlazhan
    • 1
  • I. V. Kravchenko
    • 2
  • K. Yu. Prochukhan
    • 3
  • Yu. A. Prochukhan
    • 3
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Bashkir State UniversityUfaRussia

Personalised recommendations