Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 75–85 | Cite as

Direct Numerical Simulation of Turbulent Combustion of Hydrogen—Air Mixtures of Various Compositions in a Two-Dimensional Approximation

  • V. Ya. Basevich
  • A. A. Belyaev
  • S. M. FrolovEmail author
  • F. S. Frolov
Combustion, Explosion, and Shock Waves


A technique of two-dimensional direct numerical simulation of turbulent flame propagation in reacting gas mixtures under stationary homogeneous isotropic turbulence conditions is proposed. This technique is based on a detailed kinetic mechanism of combustion of a multicomponent mixture and uses no fitting parameters. It is applied to the calculation of turbulent combustion of a hydrogen-air mixture. A condition is proposed to compare the results of two-dimensional calculations (dependences of flame propagation velocity on turbulence intensity) with the data of actual three-dimensional experiments. The obtained agreement between the calculated and measured dependences confirmed the validity of the proposed condition. The effects of pressure on the flame propagation velocity were considered. The calculated concentrations of the active reaction centers-hydroxyl (OH) and H and O atoms-in turbulent flame are lower than those in laminar flame, which also agrees with experimental results.


direct numerical simulation turbulent combustion detailed kinetic mechanism hydrogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Damkoler, Z. Elektrochem. 46, 601 (1940).Google Scholar
  2. 2.
    K. I. Shchelkin, Zh. Tekh. Fiz. 13, 520 (1943).Google Scholar
  3. 3.
    B. Lewis and G. Elbe, Combustion, Flames and Explosions of Gases (Academic, Orlando, 1987).Google Scholar
  4. 4.
    A. S. Sokolik, Self-Ignition, Flame and Detonation in Gases (Akad. Nauk SSSR, Moscow, 1960) [in Russian].Google Scholar
  5. 5.
    E. S. Shchetinkov, Gas Combustion Physics (Nauka, Moscow, 1965) [in Russian].Google Scholar
  6. 6.
    J. A. Bernard and J. N. Bradley, Flame and Combustion (Chapman Hall, London, New York, 1985).Google Scholar
  7. 7.
    T. Echekki and J. H. Chen, Combust. Flame 134, 169 (2003).CrossRefGoogle Scholar
  8. 8.
    J. B. Bell, M. S. Day, and J. F. Grcar, Proc. Combust. Inst. 29, 1987 (2002).CrossRefGoogle Scholar
  9. 9.
    J. B. Bell, R. K. Cheng, M. S. Day, and I. G. Shepherd, Proc. Combust. Inst. 31, 1309 (2006).CrossRefGoogle Scholar
  10. 10.
    A. J. Aspden, M. S. Day, and J. B. Bell, Combust. Flame 166, 266 (2016).CrossRefGoogle Scholar
  11. 11.
    V. Ya. Basevich, V. P. Volodin, S. M. Kogarko, and N. I. Peregudov, Khim. Fiz. 1, 1130 (1982).Google Scholar
  12. 12.
    V. Ya. Basevich, A. A. Belyaev, S. M. Frolov, and B. Basara, Gorenie Vzryv 10, 4 (2017).Google Scholar
  13. 13.
    F. A. Williams, Combustion Theory (Addison-Wesley, Reading, Mass., 1965; Nauka, Moscow, 1971).Google Scholar
  14. 14.
    S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (Nauka, Moscow, 1977) [in Russian].Google Scholar
  15. 15.
    V. Ya. Basevich, A. A. Belyaev, V. S. Posvyanskii, and S. M. Frolov, Russ. J. Phys. Chem. B 7, 161 (2013).CrossRefGoogle Scholar
  16. 16.
    A. Burcat, Thermodynamic Data at the Web Site of the Laboratory for Chemical Kinetics. Ideal Gas Thermo-dynamic Data in Polynomial Form for Combustion and Air Pollution Use.
  17. 17.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).Google Scholar
  18. 18.
    V. P. Karpov and E. S. Severin, Fiz. Goreniya Vzryva 16, 45 (1980).Google Scholar
  19. 19.
    L. S. Kozachenko, Doctoral (Phys. Math.) Dissertation (Inst. Chem. Phys. Acad, Sci. USSR, Moscow, 1954).Google Scholar
  20. 20.
    J. Manton and B. B. Milliken, in Proceedings of the Gas Dynamics Symposium on Aerothermochemistry, Northwestern Univ., 1956, p. 151.Google Scholar
  21. 21.
    G. E. Andrews and D. Bradley, Combust. Flame 20, 77 (1973).CrossRefGoogle Scholar
  22. 22.
    T. Iijima and T. Takeno, Combust. Flame 65, 35 (1986).CrossRefGoogle Scholar
  23. 23.
    D. R. Dowdy, D. B. Smith, S. C. Taylor, and A. Williams, Proc. Combust. Inst. 23, 325 (1990).CrossRefGoogle Scholar
  24. 24.
    A. A. Belyaev and V. S. Posvyanskii, Algoritmy Program. Inform. Byull. Gos. Fonda Algoritmov Programm SSSR, No. 3, 35 (1985).Google Scholar
  25. 25.
    V. Ya. Basevich and S. M. Kogarko, Fiz. Goreniya Vzryva 21 (5), 12 (1985).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Ya. Basevich
    • 1
  • A. A. Belyaev
    • 1
  • S. M. Frolov
    • 1
    • 2
    • 3
    Email author
  • F. S. Frolov
    • 1
    • 3
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.MIFI National Research Nuclear UniversityMoscowRussia
  3. 3.Systems Research Institute, Federal Scientific CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations