Skip to main content
Log in

SWCNT as a Model Nanosensor for Associated Petroleum Gas Molecules: Via DFT/B3LYP Investigations

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstrac

We investigated the adsorption of associated petroleum gas (APG) molecules: methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), pentane (C5H12), nitrogen (N2), and carbon dioxide (CO2) on the surface of (6, 0) zigzag SWCNT using density functional theory (DFT) calculations to explore a highly sensitive nanosensor for these molecules which take great attention due to environmental and industrial considerations. To better understand the energetic and electronic properties, which include the adsorption energies, HOMO energies, Fermi level energies, LUMO energies, energy gaps, work functions, dipole moments, and the reactivity descriptors are performed for SWCNT in free mode and interacted with the above gas molecules. The molecular electrostatic potential and the electron density surfaces have been constructed. Moreover, we used orbital analysis counting the density of states (DOS) to finding out the possible orbital hybridization between APG molecules and SWCNT. Based on the results, we believe that SWCNT has potential to be a new effective nanosensor for APG molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Knizhnikov and N. Poussenkova, Preprint (World Wildlife Federation, Inst. World Economy and Int. Relations, Russia, 2009).

    Google Scholar 

  2. T. H. Roland, Policy 37, 407 (2008).

    Article  Google Scholar 

  3. H. Devold, Oil and Gas Production Handbook: An Introduction to Oil and Gas Production (Lulu.com, 2013).

  4. A. Solov’yanov, Russ. J. Gen. Chem. 81, 2531 (2011).

    Article  CAS  Google Scholar 

  5. S. Moon, N.M. Vuong, D. Lee, D. Kim, H. Lee, D. Kim, S.-K. Hong, and S.-G. Yoon, Sens. Actuators, B 222, 166 (2016).

    Article  CAS  Google Scholar 

  6. M. Asad and M. H. Sheikhi, Sens. Actuators, B 231, 474 (2016).

    Article  CAS  Google Scholar 

  7. X. Zhang, H. Cui, Y. Gui, and J. Tang, Nanoscale Res. Lett. 12, 177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H. Elhaes, A. Fakhry, and M. Ibrahim, Mater. Today: Proc. 3, 2483 (2016).

    Google Scholar 

  9. G. A. Rivas, M. D. Rubianes, M. L. Pedano, N. F. Ferreyra, G. Luque, and S. A. Miscoria, in New Topics in Electrochemistry Research, Ed. by M. Nunez (Nova Science, New York, 2006), p. 1.

  10. R. Jaaniso and O. K. Tan, Semiconductor Gas Sensors (Elsevier, Amsterdam, 2013).

    Book  Google Scholar 

  11. S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley, New York, 2008).

    Google Scholar 

  12. M. J. O’Connell, Carbon Nanotubes: Properties and Applications (CRC, Boca Raton, FL, 2006).

    Book  Google Scholar 

  13. M. Yoosefian, Z. Barzgari, and J. Yoosefian, Struct. Chem. 25, 9 (2014).

    Article  CAS  Google Scholar 

  14. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  15. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  16. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, et al., Gaussian 09, Rev. A.02 (Gaussian, Inc., Wallingford CT, 2016).

    Google Scholar 

  17. A. M. Khuodhair, F. N. Ajeel, and M. O. Oleiwi, J. Appl. Phys. Sci. Int. 6, 202 (2016).

    Google Scholar 

  18. F. N. Ajeel, A. M. Khudhair, and A. A. Mohammed, Int. J. Sci. Res. 4, 2334 (2015).

    Google Scholar 

  19. C. J. Cramer, Essentials of Computational Chemistry: Theories and Models (Wiley, Chichester, 2013).

    Google Scholar 

  20. M. Oftadeh, S. Naseh, and M. Hamadanian, Comput. Theor. Chem. 966, 20 (2011).

    Article  CAS  Google Scholar 

  21. M. Oftadeh, M. Gholamian, and H. H. Abdallah, Int. Nano Lett. 3, 1 (2013).

    Article  CAS  Google Scholar 

  22. P. Pannopard, P. Khongpracha, M. Probst, and J. Limtrakul, J. Mol. Graph. Model. 28, 62 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. M. Noei, J. Mol. Liq. 224, 757 (2016).

    Article  CAS  Google Scholar 

  24. M. Eslami, V. Vahabi, and A. A. Peyghan, Phys. E (Amsterdam, Neth.) 76, 6 (2016).

    Article  CAS  Google Scholar 

  25. G. Vallejo-Fernandez, N. Aley, J. Chapman, and K. O’Grady, Appl. Phys. Lett. 97, 222505 (2010).

    Article  CAS  Google Scholar 

  26. S. Chen, S. Scheiner, T. Kar, and U. Adhikari, Int. J. Electrochem. Sci. 7, 7128 (2012).

    CAS  Google Scholar 

  27. M. H. Al-Abboodi, F. N. Ajeel, and A. M. Khudhair, Phys. E (Amsterdam, Neth.) 88, 1 (2017).

    Article  CAS  Google Scholar 

  28. S. S. Li, Semiconductor Physical Electronics (Springer Science, New York, 2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad N. Ajeel.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajeel, F.N., Mohammed, M.H. & Khudhair, A.M. SWCNT as a Model Nanosensor for Associated Petroleum Gas Molecules: Via DFT/B3LYP Investigations. Russ. J. Phys. Chem. B 13, 196–204 (2019). https://doi.org/10.1134/S1990793119010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119010020

Keywords

Navigation