Treatment of Polystyrene in Sub- and Supercritical Media
Article
First Online:
- 5 Downloads
Abstract
The treatment of polystyrene in sub- and supercritical (SC) freons was studied in comparison with processes in supercritical carbon dioxide. Subcritical freon R22 was shown to be much more effective in saturating polystyrene than subcritical R410a and SC R23 and CO2. Subsequent thermal treatment of the samples saturated with R22 gave a polymer with a developed porous structure and an average pore size of up to 250 μm. The results of this study can be used to develop new technologies for the preparation of porous polystyrene.
Keywords
polymers porosity supercritical fluids subcritical freons carbon dioxidePreview
Unable to display preview. Download preview PDF.
References
- 1.I. A. Makaryan, A. Yu. Kostin, M. I. Rudakova, A. A. Butakov, and V. I. Savchenko, Prom. Pr-vo Ispol’zov. Elastomerov, No. 4, 12 (2011).Google Scholar
- 2.V. F. Khairutdinov, F. R. Gabitov, F. M. Gumerov, and P. R. Khusnutdinov, Vestn. Kazan. Tekhnol. Univ., No. 2, 130 (2009).Google Scholar
- 3.M. Kaliva, G. S. Armatas, and M. Vamvakaki, Langmur 5, 2690 (2012).CrossRefGoogle Scholar
- 4.T. Hassel, D. J. Parker, H. A. Jones, T. McAllister, and S. M. Howdle, Chem. Commun. 52, 5383 (2016).CrossRefGoogle Scholar
- 5.H. Park, R. B. Thompson, N. Lauson, C. Tzoganakis, C. B. Park, and P. Chen, J. Phys. Chem. B 111, 3859 (2007).CrossRefPubMedGoogle Scholar
- 6.A. Zhang, Q. Zhang, H. Bai, L. Li, and J. Li, Chem. Soc. Rev. 43, 6958 (2014).Google Scholar
- 7.E. Tayton, M. Purcell, A. Aarvold, J. O. Smith, S. Kalra, A. Briscoe, K. Shakesheff, S. M. Howdle, D. G. Dunlop, and R. O. C. Oreffo, Acta Biomater. 8, 1918 (2012).CrossRefPubMedGoogle Scholar
- 8.C. M. Stafford, Doctoral Dissertation (Univ. Massachusetts, Boston, 2002).Google Scholar
- 9.L. N. Nikitin, M. O. Gallyamov, K. A. Vinokur, A. Yu. Nikolaev, E. E. Said-Galiev, A. R. Khokhlov, and K. Schaumburg, in Proceedings of the 7th Italian Conference on Supercritical Fluids and their Application, 9th Meeting on Supercritical Fluids, Trieste, Italy, June 13–16, 2004.Google Scholar
- 10.A. Cabanas, E. Enciso, M. C. Carbajo, M. J. Torralvo, C. Pando, and J. A. Kenuncio, Langmur 22, 8966 (2006).CrossRefGoogle Scholar
- 11.I. Kikic, J. Supercrit. Fluids 47, 458 (2009).CrossRefGoogle Scholar
- 12.A. Yu. Nikolaev, Cand. Sci. (Phys. Math.) Dissertation (Moscow, 2006).Google Scholar
- 13.D. Yu. Zalepugin, N. A. Til’kunova, V. L. Korolev, E. N. Glukhan, and V. S. Mishin, Sverkhkrit. Fluidy Teor. Prakt. 1 (2), 49 (2006).Google Scholar
- 14.S. H. Smith, Master’s (Chem.) Thesis (Virginia Polytech. Inst., State Univ., 1998).Google Scholar
- 15.L. N. Nikitin, A. Yu. Nikolaev, E. E. Said-Galiev, A. I. Gamzazade, and A. R. Khokhlov, Sverkhkrit. Fluidy Teor. Prakt. 1 (1), 77 (2006).Google Scholar
- 16.L. N. Nikitin, M. O. Gallyamov, K. A. Vinokur, A. Yu. Nikolaev, E. E. Said-Galiev, A. R. Khokhlov, H. T. Jespersen, and K. Schaumburg, J. Supercrit. Fluids 26, 263 (2003).CrossRefGoogle Scholar
- 17.J. He and B. Wang, Ind. Eng. Chem. Res. 48, 5093 (2009).CrossRefGoogle Scholar
- 18.D. Yu. Zalepugin, A. V. Maksimkin, M. V. Kiselevskii, N. A. Til’kunova, N. Yu. Anisimova, I. V. Chernyshova, T. S. Spirina, F. S. Senatov, and M. I. Vlasov, Sverkhkrit. Fluidy Teor. Prakt. 11 (4), 30 (2016).Google Scholar
- 19.D. Yu. Zalepugin, A. V. Maksimkin, M. V. Kiselevskii, N. A. Til’kunova, N. Yu. Anisimova, I. V. Chernyshova, T. S. Spirina, F. S. Senatov, and M. I. Vlasov, Sverkhkrit. Fluidy Teor. Prakt. 12 (1), 4 (2017).Google Scholar
- 20.RF Patent No. 2266305 (2005).Google Scholar
- 21.D. Yu. Zalepugin, N. A. Til’kunova, V. L. Korolev, E. N. Glukhan, and V. S. Mishin, Sverkhkrit. Fluidy Teor. Prakt. 1 (2), 36 (2006).Google Scholar
- 22.RF Patent No. 2263894 (2005).Google Scholar
- 23.T. Miyoshi, K. Takegoshi, and T. Terao, Macromolecules 3, 6582 (1997).CrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018