Russian Journal of Physical Chemistry B

, Volume 12, Issue 7, pp 1132–1143 | Cite as

Development of Functional Polymer Coatings Using Supercritical Fluids: Technologies, Markets, and Prospects

  • I. A. MakaryanEmail author
  • A. Yu. Kostin
  • I. V. Sedov


This review analyzes the studies and developments of technologies based on the use of supercritical fluids for the micronization of polymer particles and the formation of efficient powder polymer coatings. Potential advantages of supercritical fluid technologies which combine different stages of formation of powder coatings in a unified flowsheet are considered. Possible further trends in scientific and engineering research are identified. A growth in the global market of powder coatings by 2020 is forecasted.


supercritical fluids micronization polymerization polymer microparticles functional powder coatings market forecast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. D. Yeo and E. Kiran, J. Supercrit. Fluids 34, 287 (2005). doi 10.1016/j.supflu.2004.10.006CrossRefGoogle Scholar
  2. 2.
    List and Codes of Pollutants in Atmospheric Air, 9th ed. (Atmosfera, St. Petersburg, 2010) [in Russian].Google Scholar
  3. 3.
    S. L. Turner, J. N. Baskir, and C. M. Nunez, Powder Coatings: a Technology Review. Pollution Prevention Review (Wiley, New York, 1999), p. 7.Google Scholar
  4. 4.
    A. M. Vorobei, K. B. Ustinovich, O. I. Pokrovskiy, O. O. Parenago, and V. V. Lunin, Russ. J. Phys. Chem. B 9, 1103 (2015).CrossRefGoogle Scholar
  5. 5.
    Advanced Powder Coating Technology. Processing Steps in Powder Coating Manufacture.
  6. 6.
    US Patent No. 6849678 (2005).Google Scholar
  7. 7.
    D. Yu. Zalepugin, N. A. Til’kunova, I. V. Chernyshova, and V. S. Polyakov, Sverkhkrit. Fluidy Teor. Prakt. 1 (1), 2 (2006).Google Scholar
  8. 8.
    F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Sub-and Super Critical Fluids in Processes of Polymers Processing (AN RT Fen, Kazan) [in Russian].Google Scholar
  9. 9.
    D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert, L. J. Lee, and K. W. Koelling, Ind. Eng. Chem. Res. 42, 6431 (2003). doi 10.1021/ie030199zCrossRefGoogle Scholar
  10. 10.
    R. Parhi and P. Suresh, Adv. Pharm. Sci. Technol. 1, 13 (2013). doi 10.14302/issn.2328-0182.japst-12-145CrossRefGoogle Scholar
  11. 11.
    E. Reverchon and G. Della Porta, Pure Appl. Chem. 73, 1293 (2001).CrossRefGoogle Scholar
  12. 12.
    J. Jung and M. Perrut, J. Supercrit. Fluids 20, 179 (2001).CrossRefGoogle Scholar
  13. 13.
    J.-J. Shim, M. Z. Yates, and K. P. Johnston, Ind. Eng. Chem. Res. 38, 3655 (1999). doi 10.1021/ie990039gCrossRefGoogle Scholar
  14. 14.
    US Patent No. 6340722 (2002).Google Scholar
  15. 15.
    Y. Chernyak, F. Henon, R. B. Harris, R. D. Gould, R. K. Franklin, J. R. Edwards, J. M. DeSimone, G. Ruben, and R. G. Carbonell, Ind. Eng. Chem. Res. 40, 6118 (2001). doi 10.1021/ie010267mCrossRefGoogle Scholar
  16. 16.
    R. K. Franklin, J. R. Edwards, Y. Chernyak, R. D. Gould, F. Henon, G. Ruben, and R. G. Carbonell, Ind. Eng. Chem. Res. 40, 6127 (2001). doi 10.1021/ie010268eCrossRefGoogle Scholar
  17. 17.
    M. R. Bagherzadeh, T. Mousavinejad, E. Akbarinezhad, and M. Ahmadi, Prog. Org. Coat. 77, 1977 (2014). doi 10.1016/j.porgcoat.2014.07.017CrossRefGoogle Scholar
  18. 18.
    T. Mousavinejad, M. R. Bagherzadeh, E. Akbarinezhad, and M. J.-F. Guinel, Prog. Org. Coat. 79, 90 (2015). doi 10.1016/j.porgcoat.2014.11.009CrossRefGoogle Scholar
  19. 19.
    O. Ratcharak and A. Sane, J. Supercrit. Fluids 89, 106 (2014). doi 10.1016/j.supflu.2014.02.020CrossRefGoogle Scholar
  20. 20.
    X. S. Liao, R. D. Yang, and F. Yang, in Proceedings of the 4th International Symposium on Emerging Technologies of Pulping and Papermaking, Guangdong, Research Progress in Paper Industry and Biorefinery, China, Nov. 8–10, 2010, Vols. 1–3, p. 2071.Google Scholar
  21. 21.
    R. D. Yang, Z. Cheng, G. W. Chen, and F. Yang, J. Appl. Polym. Sci. 132, 42439 (2015). doi 10.1002/app.42439Google Scholar
  22. 22.
    M. Türk, in Supercritical Fluid Science and Technology (Elsevier, Amsterdam, 2014), Vol. 6, p. 77.Google Scholar
  23. 23.
    M. Perrut, Supercritical Fluid Applications: Industrial Development and Economic Issues, Lecture (SEPAREX, 2011).Google Scholar
  24. 24.
    USA Patent No. 7537803 B2 (2009).Google Scholar
  25. 25.
    J. Wang and R. Pfeffer, AIChE J. 51, 440 (2005). doi 10.1002/aic.10323CrossRefGoogle Scholar
  26. 26.
    V. Martin, R. Romero-Diez, S. Rodrigues-Rojo, and M. J. Cocero, Chem. Eng. J. 279, 425 (2015). doi 10.1016/j.cej.2015.05.014CrossRefGoogle Scholar
  27. 27.
    N. Murillo-Cremaes, P. Subra-Paternault, J. Saurina, and A. Roig, Colloid Polym. Sci. 292, 2475 (2014). doi 10.1007/s00396-01403260-6CrossRefGoogle Scholar
  28. 28.
    L. Battaglia, M. Gallarate, P. P. Panciani, E. Ugazio, S. Sapino, E. Peira, and D. Chirio, in Nanotechnology and Nanomaterials: Application of Nanotechnology in Drug Delivery, Ed. by Ali Demir Sezer (InTech, Rijeka, Croatia, 2014).Google Scholar
  29. 29.
    E. Lack, A. E. Weidner, B. Z. Knez, S. Gruner, B. Weinreich, and H. Seidlitz, in Proceedings of the 1st Vienna International Conference on Micro-and Nano-Technology, Vienna, Austria, March 9–11, 2005.Google Scholar
  30. 30.
    E. Weidner, R. Steiner, and Z. Knez, High Pressure Chemical Engineering (Elsevier, Amsterdam, 1996), p. 223.Google Scholar
  31. 31.
    J. Fages, H. Lochard, J.-J. Letourneau, M. Sauceau, and E. Rodier, Powder Technol. 141, 219 (2004). doi 10.1016/j.powtec.2004.02.007CrossRefGoogle Scholar
  32. 32.
    Z. Knez, Chem. Ind. Chem. Eng. Quart. 12, 141 (2006).CrossRefGoogle Scholar
  33. 33.
    D. C. Busby, C. W. Glancy, K. L. Hoy, C. Lee, and K. A. Nielsen, J. Oil Color Chem. Assoc. 74, 362 (1991).Google Scholar
  34. 34.
    J. L. Fulton, G. S. Deverman, C. R. Yonker, J. W. Grate, J. de Young, and J. B. McClain, Polymer 44, 3627 (2003). doi 10.1016/S0032-3861(03)00280-5CrossRefGoogle Scholar
  35. 35.
    L. Ovaskainen, S. Chigome, N. A. Birkin, S. M. Howdle, N. Torto, L. Wagberg, and C. Turner, J. Supercrit. Fluids 95, 610 (2014). doi 10.1016/j.supflu.2014.09.014CrossRefGoogle Scholar
  36. 36.
    J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chem. Rev. 99, 543 (1999). doi 10.1021/cr9700336CrossRefPubMedGoogle Scholar
  37. 37.
    Z. Knez and E. Weidner, Curr. Opin. Solid State Mater. Sci. 7, 353 (2003).CrossRefGoogle Scholar
  38. 38.
    M. Petermann, in Proceedings of the 4th International Symposium on High Pressure Process Technology and Chemical Engineering, Venice, Italy, Sept. 22–25, 2002, Vol. 2, p. 723.Google Scholar
  39. 39.
    S. D. Yeo and E. Kiran, Macromolecules 37, 8239 (2004).CrossRefGoogle Scholar
  40. 40.
    A. Yu. Kostin, A. A. Butakov, and E. N. Shatunova, in Proceedings of the 7th Conference with International Participation on Supercritical Fluides: Fundamental Principles, Technologies, Innovations, Zelenogradsk, Kaliningrad Region, Sept. 16–21, 2013, p. 34.Google Scholar
  41. 41.
    A. A. Butakov, A. Yu. Kostin, and E. N. Shatunova, Russ. J. Phys. Chem. B 5, 1155 (2011).CrossRefGoogle Scholar
  42. 42.
    RF Patent No. 2385334 (2010).Google Scholar
  43. 43.
    RF Patent No. 2481362 (2013).Google Scholar
  44. 44.
    N. M. Galashina, Vysokomol. Soedin. 36, 640 (1994).Google Scholar
  45. 45.
    I. Bochon, S. Kereth, A. Kilzer, and M. Peterman, J. Supercrit. Fluids 96 (Spec. Iss.), 324 (2015). doi 10.1016/j.supflu.2014.09.042Google Scholar
  46. 46.
    K. Matsuyama and K. Mishima, J. Supercrit. Fluids 49, 256 (2009). doi 10.1016/j.supflu.2009.03.001CrossRefGoogle Scholar
  47. 47.
    K. M. Do, H. Yuvaraj, M. H. Woo, H. G. Kim, E. D. Jeong, P. Keith, K. P. Johnston, and K. T. Lim, Colloid Polym. Sci. 286, 1343 (2008). doi 10.1007/s00396-008-1892-0CrossRefGoogle Scholar
  48. 48.
    Powder Coatings Market by Resin Type (Epoxy, Epoxy-Polyester Hybrid, Polyester, Acrylic, Polyurethane and Others) and by End-User Industries (Architectural, Appliances, Automotive, General Industrial, Furniture and Others)–Global Forecast to 2019, Report Code: CH 2790 (2014).
  49. 49.
    Global Powder Coating Market, Market Report (Acmite Market Intelligence, 2011).Google Scholar
  50. 50.
    THAR Technologies Inc.
  51. 51.
    Supercritical Fluid Technologies Inc.
  52. 52.
  53. 53.
  54. 54.
  55. 55.
    Powder Coating Market Worth $12,055.13 Million by 2019. MarketsandMarkets Report: Powder Coatings Market by Resin Type and by End-User Industries–Global Forecast to 2019.
  56. 56.
    The Powder Coatings Market Does not Develop at Full Strength.
  57. 57.
    Grand View Research, Inc.: Global Powder Coatings Market by Application (Automotive, Consumer Goods, General Industry, Architectural, Furniture) Expected to Reach USD 12.48 Billion by 2020. Market Research & Consulting. 12.
  58. 58.
  59. 59.
    Hydrophobic Coating Market and Surfaces Forecast to 2023 in New Research Report. November 24, 2015.
  60. 60.
    Medical Coating Market by Type (Hydrophilic and Hydrophobic Coatings), Application (Medical Devices, Implants, Medical Equipment and Tools and Others) and Geography-Regional Trends and Forecast to 2019 (London, Feb. 25, 2015).
  61. 61.
    Powder Coating Market Analysis by Application (Automobile, Consumer Goods, General Industry, Architectural, Furniture) and Segment Forecasts to 2020. Grand View Research (Market Res. Consult., Apr. 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations