Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 7, pp 1144–1151 | Cite as

Supercritical Fluid Treatment of Three-Dimensional Hydrogel Matrices Obtained from Allylchitosan by Laser Stereolithography

  • A. E. LazhkoEmail author
  • K. N. Bardakova
  • B. S. Shavkuta
  • S. N. Churbanov
  • M. A. Markov
  • T. A. Akopova
  • O. O. Parenago
  • A. M. Grigoryev
  • P. S. Timashev
  • V. V. Lunin
  • V. N. Bagratashvili
Article

Abstract

The effect of the treatment of hydrogel matrices based on allyl-substituted chitosans and formed by laser stereolithography in supercritical carbon dioxide (SC-CO2) on their surface polarity and mechanical characteristics was studied. Treatment in a flow mode increased the mechanical stability of the materials due to the effective extraction of the low-molecular components and oligomers. The surface polarity of the matrix decreased, improving its biocompatibility. The hydrogel matrices treated in SC-CO2 have no cytotoxic activity, due to which they can be used in tissue engineering.

Keywords

structured hydrogels matrices laser stereolithography supercritical fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Billiet, M. Vandenhaute, J. Schelfhout, S. van Vlierberghe, and P. Dubruel, Biomaterials 33, 6020 (2012).CrossRefPubMedGoogle Scholar
  2. 2.
    A. Koroleva, O. Kufelt, S. Schlie-Wolter, U. Hinze, and B. Chichkov, Biomed. Tech. 58, 399 (2013).CrossRefGoogle Scholar
  3. 3.
    F. Croisier and C. Jérôme, Eur. Polym. J. 49, 780 (2013).CrossRefGoogle Scholar
  4. 4.
    O. Kufelt, A. El-Tamer, C. Sehring, M. Meaner, S. Schlie-Wolter, and B. N. Chichkov, Acta Biomater. 18, 186 (2015).CrossRefPubMedGoogle Scholar
  5. 5.
    A. Atala and J. J. Yoo, Essentials of 3D Biofabrication and Translation (Academic, New York, 2015).Google Scholar
  6. 6.
    L. N. Nikitin, M. O. Gallyamov, E. E. Said-Galiev, A. R. Khokhlov, and V. M. Buznik, Zh. Ros. Khim. Ob-Va Im. D. I. Mendeleeva 52 (3), 56 (2008).Google Scholar
  7. 7.
    V. P. Costa, M. E. M. Braga, C. M. M. Duarte, C. Alvarez-Lorenzo, A. Concheiro, M. H. Gil, and H. C. de Sousa, J. Supercrit. Fluids 53, 65 (2010).CrossRefGoogle Scholar
  8. 8.
    T. A. Akopova, P. S. Timashev, T. S. Demina, K. N. Bardakova, N. V. Minaev, V. F. Burdukovskii, G. V. Cherkaev, L. V. Vladimirov, A. V. Istomin, E. A. Svidchenko, N. M. Surin, and V. N. Bagratashvili, Mendeleev Commun. 25, 280 (2015).CrossRefGoogle Scholar
  9. 9.
    T. A. Akopova, A. V. Istomin, M. A. Khavpachev, T.S.Demina, E. A. Svidchenko, G. V. Cherkaev, N. M. Surin, and A. N. Zelenetskii, Izv. Ufim. Nauch. Tsentra RAN 1 (3), 5 (2016).Google Scholar
  10. 10.
    P. S. Timashev, K. N. Bardakova, S. N. Churbanov, L. I. Krotova, A. M. Grigor’ev, M. M. Novikov, S. G. Lakeev, V. I. Sevast’yanov, and V. N. Bagratashvili, Vestn. Transplantol. Iskusstv. Organov 18 (3), 85 (2016).Google Scholar
  11. 11.
    P. S. Timashev, K. N. Bardakova, T. S. Demina, G. I. Pudovkina, M. M. Novikov, M. A. Markov, D.S.Asyutin, L. F. Pimenova, E. A. Svidchenko, A.M. Ermakov, I. I. Selezneva, V. K. Popov, N. A. Konovalov, T. A. Akopova, A. B. Solov’eva, V. Ya. Panchenko, and V. N. Bagratashvili, Sovrem. Tekhnol. Med. 7 (3), 20 (2015).CrossRefGoogle Scholar
  12. 12.
    E. Breel, Tech. Report No. AN1501 (2015).Google Scholar
  13. 13.
    A. Moerman, Master (Biomed. Eng.) Thesis (2015).Google Scholar
  14. 14.
    Y. Yuan and T. R. Lee, Surf. Sci. Tech. 51, 3 (2013).CrossRefGoogle Scholar
  15. 15.
    C. Rulison, KRUSS Application Note AN213 (2000), p. 1.Google Scholar
  16. 16.
    R. Rogowska, Maint. Probl. 2, 193 (2006).Google Scholar
  17. 17.
    V. Repeta, Acta Graph. 24 (3–4), 79 (2013).Google Scholar
  18. 18.
    GOST (State Standard) R ISO 10993-5-2009, Part 5.Google Scholar
  19. 19.
    P. S. Timashev, K. N. Bardakova, T. S. Demina, G. I. Pudovkina, M. M. Novikov, M. A. Markov, D. S. Asyutin, L. F. Pimenova, E. A. Svidchenko, A. M. Ermakov, I. I. Selezneva, V. Popov, N. Konovalov, T. A. Akopova, A. B. Solovieva, et al., Mod.Technol. Med. 7, 20 (2015).Google Scholar
  20. 20.
    L. C. Xu, J. W. Bauer, and C. A. Siedlecki, Colloids Surf., B 124, 49 (2014).CrossRefGoogle Scholar
  21. 21.
    H. Liao, D. Munoz-Pinto, X. Qu, Y. Hou, M. A. Grunlan, and M. S. Hahn, Acta Biomater. 4, 1161 (2008).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. E. Lazhko
    • 1
    • 2
    Email author
  • K. N. Bardakova
    • 1
    • 3
  • B. S. Shavkuta
    • 1
  • S. N. Churbanov
    • 1
  • M. A. Markov
    • 4
  • T. A. Akopova
    • 5
  • O. O. Parenago
    • 2
    • 6
  • A. M. Grigoryev
    • 7
  • P. S. Timashev
    • 1
    • 3
  • V. V. Lunin
    • 2
    • 6
  • V. N. Bagratashvili
    • 1
    • 2
  1. 1.Institute of Photon Technologies, Crystallography and Photonics Research CenterRussian Academy of SciencesTroitsk (Moscow)Russia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Institute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  4. 4.Institute of Problems of Laser and Information TechnologiesRussian Academy of SciencesShatura, Moscow oblastRussia
  5. 5.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  6. 6.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  7. 7.Academician Shumakov Federal Research Center of Transplantation and Artificial OrgansMoscowRussia

Personalised recommendations