Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 7, pp 1120–1124 | Cite as

Adsorption Properties of Aerosilicagels Prepared by Drying in a Supercritical Carbon Dioxide Medium

  • T. V. Kon’kovaEmail author
  • M. G. Gordienko
  • N. V. Men’shutina
  • V. A. Kolesnikov
Article
  • 12 Downloads

Abstract

Mesoporous silicagels, including samples functionalized with amino groups, have been synthesized by the sol–gel method with drying in supercritical carbon dioxide. The textural and adsorption properties of SiO2 are established to depend on synthesis and modification conditions. The synthesized porous materials are considered promising adsorbents for the recovery of carbon dioxide from gas media.

Keywords

aerosilicagel carbon dioxide adsorption amino functionalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zhang, R. Singh, and P. Webley, Microporous Mesoporous Mater. 111, 478 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Zakal, J. Mayerova, and M. Kubu, Top. Catal. 53, 1361 (2010).CrossRefGoogle Scholar
  3. 3.
    R. V. Siriwardane, M. S. Shen, and E. P. Fisher, Energy Fuels 19, 1153 (2005).CrossRefGoogle Scholar
  4. 4.
    N. V. Kel’tsev, Basics of Adsorption Instrumentation (Khimiya, Moscow, 1984) [in Russian].Google Scholar
  5. 5.
    G. Li, P. Xiao, P. Webley, and J. Zhang, Adsorption 14, 415 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Loganathan, M. Tikmani, S. Edubilli, and A. Mishra, Chem. Eng. J. 256, 1 (2014).CrossRefGoogle Scholar
  7. 7.
    K. S. N. Kamarudin and N. Alias, Fuel Process. Technol. 106, 332 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Heydari-Gorji and A. Sayari, Chem. Eng. J. 173, 72 (2011).CrossRefGoogle Scholar
  9. 9.
    L. Wang, Appl. Surf. Sci. 324, 286 (2015).CrossRefGoogle Scholar
  10. 10.
    X. Yan, L. Zhang, Y. Zhang, G. Yang, and Z. Yan, Ind. Chem. Res. 50, 3220 (2011).CrossRefGoogle Scholar
  11. 11.
    N. Linneen, R. Pfeffer, and Y. S. Lin, Microporous Mesoporous Mater. 176, 123 (2013).CrossRefGoogle Scholar
  12. 12.
    M. N. Abu Tahari, A. Hakim, M. W. Mohamed Hisham, and M. A. Yarmo, Int. J. Chem. Eng. Appl. 6, 395 (2015).Google Scholar
  13. 13.
    E. Vilarrasa-García, J. A. Cecilia, S. M. L. Santos, C. L. Cavalcante, Jr., J. Jiménez-Jiménez, D. C. S. Azevedo, and E. Rodríguez-Castellón, Microporous Mesoporous Mater. 187, 125 (2014).CrossRefGoogle Scholar
  14. 14.
    R. Kishor and A. K. Ghoshal, Chem. Eng. J. 262, 882 (2015).CrossRefGoogle Scholar
  15. 15.
    N. N. Linneen, R. Pfeffer, and Y. S. Lin, Chem. Eng. J. 254, 190 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Wei, J. Wang, Y. Zhang, and L. Wang, RSC Adv. 5, 91407 (2015).CrossRefGoogle Scholar
  17. 17.
    T. V. Kon’kova, A. M. Katalevich, P. A. Gurikov, A. P. Rysev, and N. V. Men’shutina, Sverkhkrit. Fluidy Teor. Prakt. 8 (4), 29 (2013).Google Scholar
  18. 18.
    M. G. Gordienko, T. V. Kon’kova, and N. V. Men’shutina, J. Sol–Gel Sci. Technol. 79 (3), 59 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. V. Kon’kova
    • 1
    Email author
  • M. G. Gordienko
    • 1
  • N. V. Men’shutina
    • 1
  • V. A. Kolesnikov
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations