Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 7, pp 1101–1111 | Cite as

Composition of Oil Fractions Obtained in Combined Thermolysis of Heavy Sulfur-Rich Petroleum and Oxidation of Activated Carbon with Supercritical Water–Oxygen Fluid

  • O. N. FedyaevaEmail author
  • V. R. Antipenko
  • A. A. Vostrikov
Article
  • 12 Downloads

Abstract

The composition of oil fractions (OFs) obtained via the conversion of heavy sulfur-rich petroleum is studied with physicochemical methods. Petroleum is supplied to the upper part of a vertical tubular reactor packed with activated carbon (AC), through which a supercritical water-oxygen fluid is pumped. The experiment is carried out under the following conditions: pressure 30 MPa; temperatures in the upper, middle, and lower parts of the reactor of 673, 723, and 723 K, respectively; and the flow rates of oxygen, petroleum, and water of 0–3.5, 4, and 6 g/min, respectively. Time dependences between the wall temperature of the reactor and power of ohmic heaters show that the autothermal conversion regime is achieved due to heat release during the combustion of high-molecular petroleum components accumulated in the AC bed. The movement of a combustion front along the reactor axis is found. Isoprenoid and normal alkanes, 1-alkyl-2,3,6-trimethylbenzenes, and alkyl derivatives of benzothiophenes and dibenzothiophenes are the main components of OFs of the initial petroleum. A yield of OFs, whose content in the liquid products exceeds 90%, has an extreme dependence on the oxygen flow rate. An increase in the oxygen flow rate (and, consequently, an increase in temperature of the reaction mixture due to heat release during combustion) leads to an increase in the content of alkyl derivatives of bicyclic and tricyclic aromatic hydrocarbons, as well as benzothiophenes and dibenzothiophenes in OFs of the products. The content of components boiling at T < 493 K in OFs of the products increases 2–3-fold in comparison with those of the initial petroleum.

Keywords

heavy petroleum supercritical water-oxygen fluid activated carbon oxidation heat release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Meyer, E. D. Attanasi, and P. A. Freeman, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, Open-File Report No. 2007–1084 (U.S. Geological Survey, 2007).Google Scholar
  2. 2.
    J. Vilcaez, M. Watanabe, N. Watanabe, A. Kishita, and T. Adschiri, Fuel 102, 379 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. Liu, F. Bai, C.-C. Zhu, P.-Q. Yuan, Z.-M. Cheng, and W.-K. Yuan, Fuel Proc. Tech. 106, 281 (2013).CrossRefGoogle Scholar
  4. 4.
    D. Zhang, Z. Ren, D. Wang, and K. Lu, J. Anal. Appl. Pyrol. 123, 56 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Marimoto, Y. Sugimoto, S. Sato, and T. Takanohashi, Energy Fuels 28, 858 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Hosseinpour, S. J. Ahmadi, and S. Fatemi, J. Supercrit. Fluids 107, 278 (2016).CrossRefGoogle Scholar
  7. 7.
    V. R. Antipenko, I. V. Goncharov, Yu. V. Rokosov, and L. S. Borisova, Russ. J. Phys. Chem. B 5, 1195 (2011).CrossRefGoogle Scholar
  8. 8.
    I. M. Abdrafikova, G. P. Kayukova, S. M. Petrov, A. I. Ramazanova, R. Z. Musin, and V. I. Morozov, Pet. Chem. 55, 104 (2015).CrossRefGoogle Scholar
  9. 9.
    O. N. Fedyaeva, A. A. Vostrikov, M. Ya. Sokol, and N. I. Fedorova, Russ. J. Phys. Chem. B 7, 820 (2013).CrossRefGoogle Scholar
  10. 10.
    O. N. Fedyaeva, V. R. Antipenko, A. V. Shishkin, and A. A. Vostrikov, Russ. J. Phys. Chem. B 8, 1069 (2014).CrossRefGoogle Scholar
  11. 11.
    O. N. Fedyaeva, A. V. Shatrova, and A. A. Vostrikov, J. Supercrit. Fluids 95, 437 (2014).CrossRefGoogle Scholar
  12. 12.
    O. N. Fedyaeva, M. Ya. Sokol, and A. A. Vostrikov, Russ. J. Phys. Chem. B 10, 1237 (2016).CrossRefGoogle Scholar
  13. 13.
    O. N. Fedyaeva and A. A. Vostrikov, J. Supercrit. Fluids 111, 121 (2016).CrossRefGoogle Scholar
  14. 14.
    A. A. Vostrikov, D. Yu. Dubov, M. Ya. Sokol, and O. N. Fedyaeva, Russ. J. Phys. Chem. 10, 1256 (2016).CrossRefGoogle Scholar
  15. 15.
    A. A. Vostrikov, O. N. Fedyaeva, and V. I. Kolobov, J. Eng. Thermophysics 26, 1 (2017).CrossRefGoogle Scholar
  16. 16.
    O. N. Fedyaeva, V. R. Antipenko, and A. A. Vostrikov, J. Supercrit. Fluids 126, 55 (2017).CrossRefGoogle Scholar
  17. 17.
    T. Sato, P. H. Trung, T. Tomita, and N. Itoh, Fuel 95, 347 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Sato, T. Sumita, and N. Itoh, J. Supercrit. Fluids 104, 171 (2015).CrossRefGoogle Scholar
  19. 19.
    D. J. Cookson and B. E. Smith, Fuel 68, 776 (1989).CrossRefGoogle Scholar
  20. 20.
    O. N. Fedyaeva, V. R. Antipenko, and A. A. Vostrikov, Russ. J. Phys. Chem. 11, 1246 (2017).CrossRefGoogle Scholar
  21. 21.
    A. K. Manovyan, Technology of Conversion of Native Energy Carriers (Khimiya, Moscow, 2004) [in Russian].Google Scholar
  22. 22.
    O. M. Ogunsola and N. Berkovitz, Fuel 74, 1485 (1995).CrossRefGoogle Scholar
  23. 23.
    O. N. Fedyaeva, V. R. Antipenko, and A. A. Vostrikov, J. Supercrit. Fluids 88, 105 (2014).CrossRefGoogle Scholar
  24. 24.
    P. R. Patwardhan, M. T. Timko, C. A. Class, R. E. Bonomi, Y. Kida, H. H. Hernandez, J. W. Tester, and W. H. Green, Energy Fuels 27, 6108 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. Kida, C. A. Class, A. J. Concepcion, M. T. Timko, and W. H. Green, Phys. Chem. Chem. Phys. 16, 9220 (2014).CrossRefPubMedGoogle Scholar
  26. 26.
    V. R. Antipenko and T. V. Cheshkova, Izv. TPU 324 (3), 16 (2014).Google Scholar
  27. 27.
    T. A. Sagachenko, V. P. Sergun, T. V. Cheshkova, E. Yu. Kovalenko, and R. S. Min, Solid Fuel Chem. 49, 349 (2015).CrossRefGoogle Scholar
  28. 28.
    G. P. Kayukova, S. M. Petrov, and B. V. Uspenskii, Properties of Heavy Oils and Bitumens of the Permian Deposits of Tatarstan in Natural and Technogenic Processes (GEOS, Moscow, 2015) [in Russian].Google Scholar
  29. 29.
    A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Pet. Chem. 52, 221 (2012).CrossRefGoogle Scholar
  30. 30.
    B. Tissot and D. Welte, Petroleum Formation and Occurrence (Springer, Heidelberg, 1978).CrossRefGoogle Scholar
  31. 31.
    A. A. Petrov, Petroleum Hydrocarbons (Nauka, Moscow, 1984) [in Russian].Google Scholar
  32. 32.
    V. R. Antipenko, Thermal Transformations of High-Sulfur Natural Asphaltite: Geochemical and Engineering Aspects (Nauka, Novosibirsk, 2013) [in Russian].Google Scholar
  33. 33.
    G. N. Gordadze, Thermolysis of Organic Substance in Oil and Gas Exploration Geochemistry (IGiRGI, Moscow, 2002) [in Russian].Google Scholar
  34. 34.
    L. V. Gurvich, G. V. Karachentsev, V. N. Kondrat’ev, et al., Energy of Chemical Bond Cleavage; Ionization Potentials and Affinity to the Electron (Nauka, Moscow, 1974) [in Russian].Google Scholar
  35. 35.
    R. E. Summons and T. G. Powell, Nature (London, U.K.) 319, 763 (1986).CrossRefGoogle Scholar
  36. 36.
    M. P. Koopmans, J. Koster, H. M. E. van Kaam-Peters, F. Kenig, S. Schouten, W. A. Hartgers, J. W. de Leeuw, and J. S. Sinninghe Damste, Geochim. Cosmochim. Acta 60, 4467 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. N. Fedyaeva
    • 1
    Email author
  • V. R. Antipenko
    • 2
  • A. A. Vostrikov
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Petroleum Chemistry, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations