Skip to main content
Log in

Structure and Properties of Crumb Rubber–Starch Composites

  • Chemical Physics of Polymer Materials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Crumb rubber–starch composites of various compositions were produced by shear deformation in a closed-type mixer (Brabender). It was found that the introduction of starch increases the elastic modulus, decreases the elongation at break, and hardly influences the ultimate tensile strength. The observed increase in the mechanical parameters after exposure to soil is likely to be due to crosslinking under environmental action, which was confirmed by IR spectroscopy. Using X-ray microtomography, the porosity in the matrix was calculated, and exposure to soil was shown to increase the porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Yu. Dean and L. Li, Prog. Polym. Sci. 31, 576 (2006).

    Article  CAS  Google Scholar 

  2. J.-M. Raquez, R. Narayan, and P. Dubois, Macromol. Mater. Eng. 293, 447 (2008).

    Article  CAS  Google Scholar 

  3. B. Adhikari, D. De, and S. Maiti, Prog. Polym. Sci. 25, 909 (2000).

    Article  CAS  Google Scholar 

  4. Rubber Recycling, Ed. by S. K. De, A. I. Isayev, and K. Khait (CRC, Boca Raton, FL, 2005).

    Google Scholar 

  5. J. Karger-Kocsis, L. Meszaros, and T. Barany, J. Mater. Sci. 48, 1 (2013).

    Article  CAS  Google Scholar 

  6. E. V. Prut, O. P. Kuznetsova, and D. V. Solomatin, in Additives in Polymers. Analysis and Applications, Ed. by A. A. Berlin, S. Z. Rogovina, and G. E. Zaikov (Apple Academic Press, Waretown, USA, 2016), Chap. 5, p. 123.

  7. S. Z. Rogovina, Polymer Sci., Ser. C 58, 62 (2016).

    Article  CAS  Google Scholar 

  8. D. V. Solomatin, O. P. Kuznetsova, U. G. Zvereva, V. Ya. Rochev, V. G. Bekeshev, and E. V. Prut, Russ. J. Phys. Chem. B 10, 662 (2016).

    Article  CAS  Google Scholar 

  9. A. Sasov and D. van Dyck, J. Microsc. 191, 151 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. L. A. Feldkamp, L. C. Davis, and J. W. J. Kress, Opt. Soc. Am. A 1, 612 (1984).

    Article  Google Scholar 

  11. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 31, 145 (1941).

    Google Scholar 

  12. J. M. O’Relly and R. A. Mosher, Carbon 21, 47 (1983).

    Article  Google Scholar 

  13. J. V. Ibarra, E. Munoz, and R. Moliner, Org. Geochem. 24, 725 (1996).

    Article  CAS  Google Scholar 

  14. W. W. Hart, P. C. Painter, J. L. Koenig, and M. M. Coleman, Appl. Spectrosc. 31, 220 (1997).

    Article  Google Scholar 

  15. N. Dupuy, C. Wojeciechowski, C. D. Ta, J. P. Huvenne, and P. Legrand, J. Mol. Struct. 410–411, 551 (1997).

    Google Scholar 

  16. V. M. Litvinov and P. P. De, Spectroscopy of Rubber and Rubbery Materials (Rappa Technology, Shawbury, Shrewsbury, Shropshire, UK, 2002), p. 638.

    Google Scholar 

  17. W. E. Lorensen and H. E. Cline, Comput. Graph. 21, 163 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Prut.

Additional information

Original Russian Text © L.A. Zhorina, O.P. Kuznetsova, S.Z. Rogovina, L.V. Vladimirov, A.V. Grachev, E.V. Prut, A.A. Berlin, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 12, pp. 74–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhorina, L.A., Kuznetsova, O.P., Rogovina, S.Z. et al. Structure and Properties of Crumb Rubber–Starch Composites. Russ. J. Phys. Chem. B 12, 1076–1081 (2018). https://doi.org/10.1134/S1990793118060192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118060192

Keywords

Navigation