Skip to main content
Log in

Atomic and Electronic Structure and Chemical Properties of Coatings Based on Gold and Nickel Nanoparticles Deposited on Graphite

  • Kinetics and Mechanism of Chemical Reactions Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The results of a study of the interaction of H2, O2, and CO with single nanoparticles of gold and oxidized nickel forming a two-component coating on graphite are given. It is established that hydrogen and carbon monoxide may form HCO particles on the surface of gold and not on the surface of nickel, and these particles are able later to migrate and be adsorbed on nickel nanoparticles. Oxygen mainly oxidizes those HCO particles, which are associated with gold. Among the products of reactions of the above listed gases, H2O and CO2 molecules are also detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Pankina, P. A. Chernavskii, and V. V. Lunin, Russ. J. Phys. Chem. A 87, 1622 (2013).

    Article  CAS  Google Scholar 

  2. D. I. Potemkin, E. S. Saparbaev, A. V. Zadesenets, et al., Katal. Prom-sti 17 (5), 383 (2017).

    Article  Google Scholar 

  3. I. I. Obraztsova, N. K. Eremenko, G. Yu. Simenyuk, A. N. Eremenko, and B. G. Tryasunov, Solid Fuel Chem. 46, 364 (2012).

    Article  CAS  Google Scholar 

  4. A. V. Vutolkina, S. V. Kardashev, Yu. S. Kardasheva, et al., Khim. Tekhnol. Topl. Masel, No. 6, 10 (2016).

  5. P. Merchinski, R. Cheshel’ski, A. Kedz’ora, V. Manuke-vich, and T. Manetski, Katal.Prom-sti, No. 1, 6 (2017).

  6. J. H. Sinflet, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley, New York, 1983).

    Google Scholar 

  7. W. M. H. Sachtler, Le Vide 163, 19 (1979).

    Google Scholar 

  8. S. N. Augustine and W. M. H. Sachtler, J. Phys. Chem. 91, 5953 (1987).

    Article  CAS  Google Scholar 

  9. Y. Y. Huang and W. M. H. Sachtler, J. Catal. 188, 215 (1999).

    Article  CAS  Google Scholar 

  10. M. Bonarovska, A. Malinowski, and Z. Karpinski, Appl. Catal., A 188, 145 (1999).

    Article  Google Scholar 

  11. A. E. Barnett, J. L. Carter, and J. H. Sinfelt, US Patent No. 3617518 (1971).

  12. G. Diaz, A. Gomezcortes, and M. Benaisa, Catal. Lett. 38, 63 (1996).

    Article  CAS  Google Scholar 

  13. R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev. 108, 845 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. V. P. Ananikov, L. L. Khemchyan, Yu. V. Ivanova, et al., Russ. Chem. Rev. 83, 885 (2014).

    Article  CAS  Google Scholar 

  15. A. Wang, X. Y. Liu, Mou, C.-Y., and T. Zhang, J. Catal. 308, 258 (2013).

    Article  CAS  Google Scholar 

  16. I. Ashraf, S. Skandary, M. Y. Khaywah, et al., Photonics 2, 838 (2015).

    Article  CAS  Google Scholar 

  17. V. V. Smirnov, S. N. Lanin, A. Yu. Vasil’kov, S. A. Nikolaev, G. P. Murav’eva, L. A. Tyurina, and E. V. Vlasenko, Russ. Chem. Bull. 54, 2286 (2005).

    Article  CAS  Google Scholar 

  18. V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).

    Article  CAS  Google Scholar 

  19. S. A. Nikolaev, E. V. Golubina, L. M. Kustov, A. L. Tarasov, and O. P. Tkachenko, Kinet. Catal. 55, 311 (2014).

    Article  CAS  Google Scholar 

  20. Z. Gai, J. Y. Howe, J. Guo, et al., Appl. Phys. Lett. 86, 023107 (2005).

    Article  CAS  Google Scholar 

  21. H. I. Abbott, A. Aumer, Y. Lei, et al., J. Phys. Chem. C 114, 17099 (2010).

    Article  CAS  Google Scholar 

  22. E. Napetschnig, M. Schmid, and P. Varga, Surf. Sci. 601, 3233 (2007).

    Article  CAS  Google Scholar 

  23. A. K. Santra, F. Yang, and D. W. Goodman, Surf. Sci. 548, 324 (2004).

    Article  CAS  Google Scholar 

  24. J. B. Park, J. S. Ratliff, S. Ma, and D. A. Chen, Surf. Sci. 600, 2913 (2006).

    Article  CAS  Google Scholar 

  25. R. J. Davies, M. Bowker, P. R. Davies, and D. J. Morgan, Nanoscale 5, 9018 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, and D. A. Yavsin, Nanotechnol. Russ. 10, 850 (2015).

    Article  CAS  Google Scholar 

  27. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 63, 1696 (2014).

    Article  CAS  Google Scholar 

  28. P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  29. T. Ozaki, Phys. Rev. B 67, 155108 (2003).

    Article  CAS  Google Scholar 

  30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. M. M. Wohar and P. W. Jagodzinski, J. Mol. Spectrosc. 148, 13 (1991).

    Article  CAS  Google Scholar 

  32. M. Rothaemel, H. W. Zanthoff, and M. Baerns, Catal. Lett. 28, 321 (1994).

    Article  CAS  Google Scholar 

  33. M. Fastow, Y. Kosirovski, and M. Folman, J. Electron Spectrosc. Relat. Phenom. 64–65, 643 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Grishin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, M.V., Gatin, A.K., Dokhlikova, N.V. et al. Atomic and Electronic Structure and Chemical Properties of Coatings Based on Gold and Nickel Nanoparticles Deposited on Graphite. Russ. J. Phys. Chem. B 13, 9–15 (2019). https://doi.org/10.1134/S1990793118060167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118060167

Keywords

Navigation