Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 9–15 | Cite as

Atomic and Electronic Structure and Chemical Properties of Coatings Based on Gold and Nickel Nanoparticles Deposited on Graphite

  • M. V. GrishinEmail author
  • A. K. Gatin
  • N. V. Dokhlikova
  • N. N. Kolchenko
  • S. Yu. Sarvadii
  • B. R. Shub
Kinetics and Mechanism of Chemical Reactions Catalysis


The results of a study of the interaction of H2, O2, and CO with single nanoparticles of gold and oxidized nickel forming a two-component coating on graphite are given. It is established that hydrogen and carbon monoxide may form HCO particles on the surface of gold and not on the surface of nickel, and these particles are able later to migrate and be adsorbed on nickel nanoparticles. Oxygen mainly oxidizes those HCO particles, which are associated with gold. Among the products of reactions of the above listed gases, H2O and CO2 molecules are also detected.


nanoparticles gold nickel hydrogen carbon monoxide oxygen adsorption interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Pankina, P. A. Chernavskii, and V. V. Lunin, Russ. J. Phys. Chem. A 87, 1622 (2013).CrossRefGoogle Scholar
  2. 2.
    D. I. Potemkin, E. S. Saparbaev, A. V. Zadesenets, et al., Katal. Prom-sti 17 (5), 383 (2017).CrossRefGoogle Scholar
  3. 3.
    I. I. Obraztsova, N. K. Eremenko, G. Yu. Simenyuk, A. N. Eremenko, and B. G. Tryasunov, Solid Fuel Chem. 46, 364 (2012).CrossRefGoogle Scholar
  4. 4.
    A. V. Vutolkina, S. V. Kardashev, Yu. S. Kardasheva, et al., Khim. Tekhnol. Topl. Masel, No. 6, 10 (2016).Google Scholar
  5. 5.
    P. Merchinski, R. Cheshel’ski, A. Kedz’ora, V. Manuke-vich, and T. Manetski, Katal.Prom-sti, No. 1, 6 (2017).Google Scholar
  6. 6.
    J. H. Sinflet, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley, New York, 1983).Google Scholar
  7. 7.
    W. M. H. Sachtler, Le Vide 163, 19 (1979).Google Scholar
  8. 8.
    S. N. Augustine and W. M. H. Sachtler, J. Phys. Chem. 91, 5953 (1987).CrossRefGoogle Scholar
  9. 9.
    Y. Y. Huang and W. M. H. Sachtler, J. Catal. 188, 215 (1999).CrossRefGoogle Scholar
  10. 10.
    M. Bonarovska, A. Malinowski, and Z. Karpinski, Appl. Catal., A 188, 145 (1999).CrossRefGoogle Scholar
  11. 11.
    A. E. Barnett, J. L. Carter, and J. H. Sinfelt, US Patent No. 3617518 (1971).Google Scholar
  12. 12.
    G. Diaz, A. Gomezcortes, and M. Benaisa, Catal. Lett. 38, 63 (1996).CrossRefGoogle Scholar
  13. 13.
    R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev. 108, 845 (2008).CrossRefGoogle Scholar
  14. 14.
    V. P. Ananikov, L. L. Khemchyan, Yu. V. Ivanova, et al., Russ. Chem. Rev. 83, 885 (2014).CrossRefGoogle Scholar
  15. 15.
    A. Wang, X. Y. Liu, Mou, C.-Y., and T. Zhang, J. Catal. 308, 258 (2013).CrossRefGoogle Scholar
  16. 16.
    I. Ashraf, S. Skandary, M. Y. Khaywah, et al., Photonics 2, 838 (2015).CrossRefGoogle Scholar
  17. 17.
    V. V. Smirnov, S. N. Lanin, A. Yu. Vasil’kov, S. A. Nikolaev, G. P. Murav’eva, L. A. Tyurina, and E. V. Vlasenko, Russ. Chem. Bull. 54, 2286 (2005).CrossRefGoogle Scholar
  18. 18.
    V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).CrossRefGoogle Scholar
  19. 19.
    S. A. Nikolaev, E. V. Golubina, L. M. Kustov, A. L. Tarasov, and O. P. Tkachenko, Kinet. Catal. 55, 311 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. Gai, J. Y. Howe, J. Guo, et al., Appl. Phys. Lett. 86, 023107 (2005).CrossRefGoogle Scholar
  21. 21.
    H. I. Abbott, A. Aumer, Y. Lei, et al., J. Phys. Chem. C 114, 17099 (2010).CrossRefGoogle Scholar
  22. 22.
    E. Napetschnig, M. Schmid, and P. Varga, Surf. Sci. 601, 3233 (2007).CrossRefGoogle Scholar
  23. 23.
    A. K. Santra, F. Yang, and D. W. Goodman, Surf. Sci. 548, 324 (2004).CrossRefGoogle Scholar
  24. 24.
    J. B. Park, J. S. Ratliff, S. Ma, and D. A. Chen, Surf. Sci. 600, 2913 (2006).CrossRefGoogle Scholar
  25. 25.
    R. J. Davies, M. Bowker, P. R. Davies, and D. J. Morgan, Nanoscale 5, 9018 (2013).CrossRefGoogle Scholar
  26. 26.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, and D. A. Yavsin, Nanotechnol. Russ. 10, 850 (2015).CrossRefGoogle Scholar
  27. 27.
    A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, and D. A. Yavsin, Russ. Chem. Bull. 63, 1696 (2014).CrossRefGoogle Scholar
  28. 28.
    P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  29. 29.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003).CrossRefGoogle Scholar
  30. 30.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  31. 31.
    M. M. Wohar and P. W. Jagodzinski, J. Mol. Spectrosc. 148, 13 (1991).CrossRefGoogle Scholar
  32. 32.
    M. Rothaemel, H. W. Zanthoff, and M. Baerns, Catal. Lett. 28, 321 (1994).CrossRefGoogle Scholar
  33. 33.
    M. Fastow, Y. Kosirovski, and M. Folman, J. Electron Spectrosc. Relat. Phenom. 64–65, 643 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. V. Grishin
    • 1
    Email author
  • A. K. Gatin
    • 1
  • N. V. Dokhlikova
    • 1
  • N. N. Kolchenko
    • 1
  • S. Yu. Sarvadii
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations