Skip to main content
Log in

Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review)

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Golubkov, M. I. Manzhelii, and A. A. Lushnikov, Russ. J. Phys. Chem. B 8, 604 (2014).

    Article  CAS  Google Scholar 

  2. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, and A. A. Lushnikov, Russ. J. Phys. Chem. B 10, 77 (2016).

    Article  CAS  Google Scholar 

  3. E. G. Njoku and D. Entekhabi, J. Hydrol. 184, 101 (1996).

    Article  CAS  Google Scholar 

  4. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, et al., in Proceedings of the International Conference AIS (Balt. Fed. Univ. im. I. Kanta, Kalinigrad, 2016), p. 35.

    Google Scholar 

  5. T. Jackson, J. Kimball, R. Reichle, et al., Science Data Calibration and Validation Plan (Inst. Technol., California, 2012), p. 95. https://doi.org/www.nasa.gov/jpl/nasas-smapreleases-first-calibrated-data.

    Google Scholar 

  6. Radio Astronomy Group Circ. 1 (2) (2006). https://doi.org/www.britastro.org/radio/downloads/Circular%20v1%20n2s.pdf.

  7. I. S. Shklovskii, Problems of Modern Astrophysics, Collection of Articles (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  8. D. Ya. Martynov, Course of General Astronomy (Fizmatlit, Moscow, 1988) [in Russian].

    Google Scholar 

  9. K. Cooper, Astron. Now, 1 (2010). https://doi.org/www.astronomynow.com/news/n1004/26seti5/.

    Google Scholar 

  10. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 8, 103 (2014).

    Article  CAS  Google Scholar 

  11. Y. H. Kerr, P. Waldteufel, J. P. Wigneron, et al., IEEE Trans. Geosci. Remote Sens. 39, 1729 (2001).

    Article  Google Scholar 

  12. https://doi.org/www.thunderbolts.info/wp/2012/03/30/essential-guideto-the-eu-chapter-11/sun-in-radio-spectrum-at-1-4-ghz/

  13. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 57, 461 (2012).

    Article  CAS  Google Scholar 

  14. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Dokl. Phys. 58, 424 (2013).

    Article  CAS  Google Scholar 

  15. G. V. Golubkov, M. G. Golubkov, M. I. Manzhelii, and I. V. Karpov, in The Atmosphere and Ionosphere. Elementary Processes, Monitoring, and Ball Lighting, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Heidelberg, London, New York, 2014), p. 1.

    Google Scholar 

  16. C. Capsoni, A. V. Bosisio, and M. Mauri, in Microwave Radiometry and Remote Sensing of the Earth’S Surface and Atmosphere, Ed. by P. Pampaloni and S. Paloscia (VSP, Utrecht, Boston, Köln, Tokyo, 2000), p. 271.

  17. D. Cressey, Nature News Blog. https://doi.org/blogs.nature.com/news/2010/02/watching_the_worlds_water_1.html.

  18. M. G. Subbotina and Kh. Bat’e-Sales, Perm. Agrar. Vestn. 3 (3), 28 (2013).

    Google Scholar 

  19. M. Seely, An Introduction to Ocean Remote Sensing (Univ. Washington, Washington, 2014).

    Google Scholar 

  20. R. Müller, Remote Sens. 6, 5692 (2014).

    Article  Google Scholar 

  21. D. le Vine and S. Abraham, in Microwave Radiometry and Remote Sensing of the Earth’S Surface and Atmosphere, Ed. by P. Pampaloni and S. Paloscia (VSP, Utrecht, Boston, Köln, Tokyo, 2000), p. 89.

  22. S. T. Loi, T. Murphy, I. H. Cairns, et al., Geophys. Rev. Lett. 42, 3707 (2015).

    Article  Google Scholar 

  23. S. V. Avakyan, Geomagn. Aeron. 48, 417 (2008).

    Article  Google Scholar 

  24. G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 406 (2011).

    Article  CAS  Google Scholar 

  25. G. V. Golubkov, M. G. Golubkov, and G. K. Ivanov, in The Atmosphere and Ionosphere. Dynamics, Processes and Monitoring, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Heidelberg, London, New York, 2010), p. 1.

  26. G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 7, 641 (2013).

    Article  CAS  Google Scholar 

  27. A. Hauschild, M. Markgraf, and O. Montenbruck, Inside GNSS 9 (5), 49 (2014).

    Google Scholar 

  28. K. S. Jacobsen, A. Pedersen, J. I. Moen, et al., Meas. Sci. Technol. 21, 085902 (2010).

    Article  CAS  Google Scholar 

  29. J. Rurihara, T. Abe, K. I. Oyama, et al., Earth Planets Space 586, 1123 (2006).

    Google Scholar 

  30. A. D. Danilov, Popular Aeronomy, 2nd ed. (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  31. D. K. Sharma, P. K. Sharma, J. Rai, et al., Indian J. Radio Space Phys. 37, 319 (2008).

    Google Scholar 

  32. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 6, 112 (2012).

    Article  CAS  Google Scholar 

  33. https://doi.org/www.insidegnss.com/node/4376.

  34. G. V. Golubkov and G. K. Ivanov, J. Phys. B: At., Mol. Opt. Phys. 21, 2049 (1988).

    Article  CAS  Google Scholar 

  35. G. V. Golubkov and A. Z. Devdariani, Russ. J. Phys. Chem. B 5, 892 (2011).

    Article  CAS  Google Scholar 

  36. N. N. Bezuglov, G. V. Golubkov, and A. N. Klyucharev, in Atmosphere and Ionosphere. Elementary Processes, Discharges and Plasmoids, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Heidelberg, London, New York, 2013), p. 1.

  37. G. V. Golubkov and G. K. Ozerov, Dokl. Phys. 59, 122 (2014).

    Article  CAS  Google Scholar 

  38. M. G. Golubkov, G. K. Ozerov, S. O. Adamson, et al., Chem. Phys. 462, 28 (2015).

    Article  CAS  Google Scholar 

  39. G. V. Golubkov and G. K. Ivanov, Chem. Phys. Lett. 81, 110 (1981).

    Article  CAS  Google Scholar 

  40. G. K. Ivanov and G. V. Golubkov, Chem. Phys. Lett. 107, 261 (1984).

    Article  CAS  Google Scholar 

  41. G. V. Golubkov, M. G. Golubkov, and G. K. Ivanov, J. Exp. Theor. Phys. 81, 56 (1995).

    Google Scholar 

  42. G. V. Golubkov and M. G. Golubkov, J. Phys. B: At., Mol. Opt. Phys. 30, 5511 (1997).

    Article  Google Scholar 

  43. G. V. Golubkov and G. K. Ivanov, Rydberg States of Atoms and Molecules and Elementary Processes with their Participation (URSS, Moscow, 2001) [in Russian].

    Google Scholar 

  44. I. V. Karpov and G. V. Golubkov, in The Atmosphere and Ionospere. Dynamics, Processes and Monitoring, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, New York, 2010), p. 175.

  45. C. Rüdiger, J. P. Walker, Y. H. Kerr, et al., in Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 2011, p. 2002. https://doi.org/mssanz.org.au/modsim2011.

    Google Scholar 

  46. J. C. Liljergen, B. M. Lesht, T. Van Hove, and C. Rocken, in Proceedings of the 9th Annual Meeting of ARM Science Team, San Antonio, TX, 1999, p. 61. https://doi.org/www.arm.gov/publications/proceedings/conf09/.

    Google Scholar 

  47. D. M. le Vine and S. Abraham, in Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, Ed. by P. Pampaloni and S. Paloscia (VSP, Utrecht, Boston, Köln, Tokyo, 2000), p. 89.

  48. K. Saleh, Remote Sens. Environ. 101, 127 (2006).

    Article  Google Scholar 

  49. https://doi.org/www.ASPRS.org.

  50. V. L. Mironov, M. C. Dobson, V. H. Kaupp, et al., IEEE Trans. Geosci. Remote Sens. 42, 773 (2004).

    Article  Google Scholar 

  51. J. R. Howell, M. P. Mengus, and R. Siegel, in Termal Radiation Heat Transfer, 6th ed. (CRC, Boca Raton, FL, 2015), p. 1016.

    Google Scholar 

  52. E. V. Sheinin, Course of Soil Physics (Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  53. A. F. Vadyunina and Z. A. Korchagina, Methods for Investigating Physical Properties of Soils (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  54. A. I. Pozdnyakov, Pochvovedenie, No. 10, 1188 (2008).

    Google Scholar 

  55. E. A. Sharkov, Sovrem. Probl. DZZ Kosmosa 1 (1), 70 (2004).

    Google Scholar 

  56. E. A. Sharkov, Passive Microwave Remote Sensing of the Earth. Physical Foundations (Praxis, Chichester, UK, 2003).

    Google Scholar 

  57. S. A. Komarov and V. L. Mironov, Microwave Remote Sensing of Soils (Sib. Otdel. RAN, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  58. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).

    Google Scholar 

  59. S. K. Friedlander, Smokes, Dust and Haze (Wiley, London, New York, 1977).

    Google Scholar 

  60. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere (Academic, San Diego, 2000).

    Google Scholar 

  61. N. A. Fuchs, Mechanics of Aerosols (Pergamon, New York, 1964).

    Google Scholar 

  62. N. A. Fuchs and A. G. Sutugin, Topics in Current Aerosol Research, Ed. by G. M. Hidy and J. R. Brock (Pergamon, Oxford, UK, 1971), Vol. 2, p. 1.

  63. J. M. Hidy and J. R. Brock, The Dynamics of Aerocolloidal Systems (Pergamon, Oxford, UK, 1971).

    Google Scholar 

  64. U. Lohman and J. Feichter, Atmos. Chem. Phys. 5, 715 (2005).

    Article  Google Scholar 

  65. M. M. R. Williams and S. K. Loyalka, Aerosol Science, Theory and Practice (Pergamon, Oxford, 1991).

    Google Scholar 

  66. U. Poschl, Y. Rudich, and M. Ammann, Atmos. Chem. Phys. 7, 5989 (2007).

    Article  Google Scholar 

  67. M. Ammann and U. Poschl, Atmos. Chem. Phys. 7, 6025 (2007).

    Article  CAS  Google Scholar 

  68. C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic, Edinbourgh, London, 1975).

    Google Scholar 

  69. J. C. Farman, P. G. Gardiner, and J. D. Shanklin, Nature (London, U.K.) 315, 207 (1985).

    Article  CAS  Google Scholar 

  70. C. F. Clement, M. Kulmala, and T. Vesala, J. Aerosol Sci. 27, 869 (1996).

    Article  CAS  Google Scholar 

  71. C. F. Clement, in Environmental Chemistry of Aerosols, Ed. by I. Colbeck (Wiley Interscience, Oxford, 2007), p. 49.

    Google Scholar 

  72. P. Davidovits, J. T. Jaine, S. X. Duan, et al., J. Phys. Chem. 95, 6337 (1991).

    Article  CAS  Google Scholar 

  73. M. Kulmala and P. E. Wagner, J. Aerosol Sci. 32, 833 (2001).

    Article  CAS  Google Scholar 

  74. A. Laaksonen, T. Vesala, M. Kulmala, et al., Atmos. Chem. Phys. 5, 461 (2005).

    Article  CAS  Google Scholar 

  75. W. Li and E. J. Davis, Aerosol Sci. Technol. 25, 11 (1995).

    Article  Google Scholar 

  76. P. Davidovits, J. H. Hu, D. R. Worsnop, et al., Faraday Discuss 100, 65 (1995).

    Article  CAS  Google Scholar 

  77. X. Feng, M. J. Bogan, E. Chuah, and G. R. Agnes, J. Aerosol Sci. 32, 1147 (2001).

    Article  CAS  Google Scholar 

  78. Y. Q. Li, P. Davidovits, Q. Shi, et al., J. Phys. Chem. A 105, 10627 (2001).

    Article  CAS  Google Scholar 

  79. A. K. Ray, A. J. Lee, and H. L. Tilley, Langmuir 4, 631 (1988).

    Article  CAS  Google Scholar 

  80. A. A. Lushnikov and M. Kulmala, Phys. Rev. E 70, 046413 (2004).

    Article  CAS  Google Scholar 

  81. G. M. Natanson, P. Davidovits, D. R. Worsnop, and C. E. Kolb, J. Phys. Chem. 100, 13007 (1996).

    Article  Google Scholar 

  82. J. F. Widmann and E. J. Davis, J. Aerosol Sci. 28, 87 (1997).

    Article  CAS  Google Scholar 

  83. X. Qu and E. J. Davis, J. Aerosol Sci. 32, 861 (2001).

    Article  CAS  Google Scholar 

  84. P. E. Wagner, Aerosol Microphysics II, Ed. by W. H. Marlow (Springer, New York, 1982), p. 129.

    Google Scholar 

  85. G. D. Smith, E. Woods, T. Baer, and R. E. Miller, J. Phys. Chem. A 107, 9582 (2003).

    Article  CAS  Google Scholar 

  86. A. K. Ray, A. J. Lee, and H. L. Tilley, Langmuir 4, 631 (1988).

    Article  CAS  Google Scholar 

  87. A. P. Weber, M. Seipenbusch, T. Christoph, et al., J. Nanopart. Res. 1, 253 (1999).

    Article  CAS  Google Scholar 

  88. D. K. Worsnop, J. W. Morris, and Q. Shi, Geophys. Rev. Lett. 29, 20 (2002). doi 10.1029/2002GL015542

    Article  CAS  Google Scholar 

  89. J. F. Widmann and E. J. Davis, J. Aerosol Sci. 28, 87 (1997).

    Article  CAS  Google Scholar 

  90. P. M. Winkler, A. Vrtala, P. E. Wagner, et al., Phys. Rev. Lett. 93, 07501 (2004).

    Article  CAS  Google Scholar 

  91. P. M. Winkler, A. Vrtala, R. Rudolf, et al., J. Geophys. Res. 111, D19202 (2006).

    Google Scholar 

  92. A. A. Lushnikov, Atmosphere and Ionosphere. Elementary Processes, Discharges and Plasmoids, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Heidelberg, London, New York, 2013), p. 79.

  93. T. Elperin, A. Fominykh, B. Krasovitov, and A. Lushnikov, Phys. Rev. E 87, 012807 (2013).

    Article  CAS  Google Scholar 

  94. H. Korhonen, V.-M. Kerminen, and M. Kulmala, J. Geophys. Res. 110, D05201 (2005).

    Google Scholar 

  95. B. Kravitz, A. Robock, L. Oman, et al., J. Geophys. Res.-Atmos. 114, D14109 (2009).

    Google Scholar 

  96. E. S. Vasiliev, V. D. Knyazev, and I. I. Morozov, Chem. Phys. Lett. 512, 172 (2011).

    Article  CAS  Google Scholar 

  97. G. V. Karpov, I. I. Morozov, E. S. Vasiliev, et al., Chem. Phys. Lett. 586, 40 (2013).

    Article  CAS  Google Scholar 

  98. L. V. Eppelbaum, Archaeolog. Prospect. 21 (2), 25 (2014).

    Article  Google Scholar 

  99. L. V. Eppelbaum, Appl. Math. 5, 358 (2014).

    Article  Google Scholar 

  100. B. E. Khesin and L. V. Eppelbaum, Geoinformatics 8, 31 (1997).

    Article  Google Scholar 

  101. C. E. Shannon, Bell Sist. Technol. 27, 379 (1948).

    Article  Google Scholar 

  102. C. E. Shannon, Bell Sist. Technol. 27, 623 (1948).

    Article  Google Scholar 

  103. L. V. Eppelbaum, L. S. Alperovich, V. Zheludev, et al., in Proceedings of the 24th Symposium on the Application of Geophysics to Engineering and Environmental Problems SAGEEP, Charleston, SC, April 10–14, 2011, p. 24.

    Google Scholar 

  104. E. S. Ventsel’, Theory of Probabilities, 6th ed. (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  105. K. Wapenaar, R. Ghose, G. Toxopeus, et al., Integr. Comput.-Aid. Eng. 12, 5 (2005).

    Article  Google Scholar 

  106. L. V. Eppelbaum, V. Zheludev, and A. Averbuch, Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sci., Nos. 1–2, 36 (2014).

    Google Scholar 

  107. A. Averbuch, K. Hochman, N. Rabin, et al., Digital Signal Process. 20, 111 (2010).

    Article  Google Scholar 

  108. A. Averbuch, V. Zheludev, P. Neittaanm, et al., J. Math. Imaging Vision 38, 197 (2010).

    Article  Google Scholar 

  109. L. Alperovich, L. Eppelbaum, V. Zheludev, et al., J. Geophys. Eng. 10, 025017 (2013).

    Article  Google Scholar 

  110. L. Eppelbaum, Yu. Katz, J. Klokochnik, et al., Planet. Global Change 159, 1 (2018).

    Google Scholar 

  111. A. Y. Schekotov, O. A. Molchanov, M. Hayakawa, et al., Radio Sci. 42, 1 (2007).

    Article  Google Scholar 

  112. R. A. Fowler, B. J. Kotick, and R. D. Elliott, J. Geophys. Res. 72, 2871 (1967).

    Article  Google Scholar 

  113. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction, 6th ed. (Pergamon, New York, 1980).

    Google Scholar 

  114. D. le Vine and S. Abraham, in Microwave Radiometry and Remote Sensing of the Earth’S Surface and Atmosphere, Ed. by P. Pampaloni and S. Paloscia (VSP, Utrecht, Boston, Köln, 2000)).

  115. S. T. Loi, T. Murphy, I. H. Cairns, et al., Geophys. Rev. Lett. 42, 3707 (2015).

    Article  Google Scholar 

  116. S. J. Katzberg, O. Torres, M. S. Grant, et al., Remote Sens. Environ. 100, 17 (2005).

    Article  Google Scholar 

  117. Z. Xunxie and Y. Songhua, GNSS World China 3, 1 (2009).

    Google Scholar 

  118. K. M. Larson, J. J. Braun, E. E. Small, et al., IEEE JSTAR 3, 100 (2010).

    Google Scholar 

  119. W. Wei, L. Huang, C. Xiuwan, et al., Acta Meteorol. Sinica 27, 221 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Golubkov.

Additional information

Original Russian Text © G.V. Golubkov, M.I. Manzhelii, A.A. Berlin, A.A. Lushnikov, L.V. Eppelbaum, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 7, pp. 33–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, G.V., Manzhelii, M.I., Berlin, A.A. et al. Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review). Russ. J. Phys. Chem. B 12, 725–748 (2018). https://doi.org/10.1134/S1990793118040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118040061

Keywords

Navigation