Skip to main content
Log in

Mercury Isotopes in Earth and Environmental Chemistry

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In Earth and environmental chemistry magnetic isotopes are the universal means to identify reaction mechanisms. Mass-independent fractionation of isotopes as a signature of mechanism occurs by two ways: first, via magnetic isotope effect (MIE), which is controlled by magnetic, or hyperfine, coupling between unpaired electrons and magnetic nuclei in paramagnetic species (in radicals, particularly), and, second, via nuclear volume effect (NVE), which is induced by the difference in volumes of isotopic nuclei. MIE is the dependence of the reaction rates on the nuclear magnetic moment of reactants and fractionates magnetic and nonmagnetic isotopes; NVE fractionates isotopes with different nuclear volumes. Both effects, MIE and NVE, are supposed to coexist in condensed phases. Decisive test for their differentiation is illustrated by example of radical pairs with mercury nuclei: if isotope fractionation is controlled by MIE, the ratio Δ201Hg/Δ199Hg is expected to be in the limits 1.05–1.25 for isotopic enrichment and 0.80–0.92 for impoverishment. If isotope fractionation is controlled by NVE, this ratio is estimated to be in the range 0.50–0.62. In contrast to MIE-induced two-directional fractionation, which is controlled by direction of coherent spin conversion of radical pair (triplet–singlet or vice versa), the NVE induces one-directional, universal isotope fractionation, almost independent on the reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G Lawler and G. T. Evans, Ind. Chim. Belges 36, 1087 (1971).

    CAS  Google Scholar 

  2. A. L Buchachenko and G. A. Nikiforov, Dokl. Akad. Nauk SSSR 228, 379 (1976).

    CAS  Google Scholar 

  3. A. L. Buchachenko, Russ. J. Phys. Chem. 51, 1445 (1977).

    Google Scholar 

  4. A. L Buchachenko, Chem. Rev. 95, 2507 (1995).

    Article  CAS  Google Scholar 

  5. A. L Buchachenko, J. Phys. Chem. A 105, 9995 (2001).

    Article  CAS  Google Scholar 

  6. A. L. Buchachenko, Pure Appl. Chem. 72, 2243 (2000).

    Article  CAS  Google Scholar 

  7. A. L. Buchachenko, J. Phys. Chem. B 117, 2231 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. A. L. Buchachenko and R. G. Lawler, Acc. Chem. Res. 50, 877 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. A. L. Buchachenko, Magnetic Isotope Effect in Chemistry and Biochemistry (Nova Science, New York, 2009).

    Google Scholar 

  10. A. L. Buchachenko, Magneto-Biology and Medicine (Nova Science, New York, 2015).

    Google Scholar 

  11. J. Bigeleisen, J. Am. Chem. Soc. 118, 3676 (1996).

    Article  CAS  Google Scholar 

  12. E. A. Schauble, Geochim. Cosmochim. Acta 71, 2170 (2007).

    Article  CAS  Google Scholar 

  13. J. Bigeleisen, Proc. Natl. Acad. Sci. U.S.A. 93, 9393 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Bigeleisen, Proc. Natl. Acad. Sci. U.S.A. 95, 4808 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. M. Eiler, B. Bergquist, I. Bourg, P. Cartigny, J. Farquhar, A. Gagnon, W. Guog, L. Halevy, A. Hofmann, T. E. Larson, N. Levin, E. A. Schauble, and D. Stolper, Chem. Geol. 372, 119 (2014).

    Article  CAS  Google Scholar 

  16. J. D. Blum, L. S. Sherman, and M. W. Johnson, Ann. Rev. Earth Planet. Sci. 42, 249 (2014).

    Article  CAS  Google Scholar 

  17. J. R. Hulston and H. G. Thode, J. Geophys. Res. 70, 3475 (1965).

    Article  CAS  Google Scholar 

  18. R. N. Clayton, L. Grossman, and T. K. Mayeda, Science (Washington, DC, U. S.) 182, 485 (1973).

    Article  CAS  Google Scholar 

  19. R. N. Clayton, Ann. Rev. Earth Planet. Sci. 21, 115 (1993).

    Article  CAS  Google Scholar 

  20. M. H. Thiemens and J. E. Heidenreich III, Science (Washington, DC, U. S.) 219, 1073 (1983).

    Article  CAS  Google Scholar 

  21. M. H. Thiemens, Ann. Rev. Earth Planet. Sci. 34, 217 (2006).

    Article  CAS  Google Scholar 

  22. M. H. Thiemens, Proc. Nat. Acad. Sci. 110, 17631 (2013).

    Article  PubMed  Google Scholar 

  23. R. E. Weston, Jr., Chem. Rev. 99, 2115 (1999).

    Article  CAS  Google Scholar 

  24. R. E. Weston, Jr., in Isotope Effects in Chemistry and Biology, Ed. by A. Cohen and H.-H. Limbach (CRC, Taylor and Francis, Boca Raton, FL, 2006).

  25. A. A. Wiegel, A. S. Cole, K. Hoag, E. L. Atlas, and K. A. Boering, Proc. Nat. Acad. Sci. 110, 17680 (2013).

    Article  PubMed  Google Scholar 

  26. R. A. Marcus, J. Chem. Phys. 121, 8201 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. F. Robert and C. Camy-Peret, Ann. Geophys. 19, 229 (2001).

    Article  CAS  Google Scholar 

  28. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 17: Magnetic Properties of Free Radicals, Ed. by H. Fischer (Springer, Berlin, 1990).

    Google Scholar 

  29. A. L. Buchachenko, V. L. Ivanov, V. A. Roznyatovskii, A. K. Vorob’ev, and Y. A. Ustynyuk, Dokl. Phys. Chem. 413, 50 (2007).

    Article  CAS  Google Scholar 

  30. A. L. Buchachenko, V. L. Ivanov, V. A. Roznyatovskii, A. K. Vorob’ev, and Y. A. Ustynyuk, Dokl. Phys. Chem. 420, 85 (2008).

    Article  CAS  Google Scholar 

  31. B. A. Bergquist and J. D. Blum, Science (Washington, DC, U. S.) 318, 417 (2007).

    Article  CAS  Google Scholar 

  32. S. Huang, D. Yuan, H. Lin, L. Sun, and S. Lin, Appl. Geochem. 76, 159 (2017).

    Article  CAS  Google Scholar 

  33. R. S. Smith, J. G. Wiederhold, A. D. Jew, G. E. Brown, Jr., B. Bourdon, R. Kretzschmar, Geochim. Cosmochim. Acta 137, 1 (2014).

    Article  CAS  Google Scholar 

  34. Q. Huang, J. Chen, and W. Huang, Atmos. Chem. Phys. 16, 11773 (2016).

    Article  CAS  Google Scholar 

  35. L. S. Sherman, J. D. Blum, D. K. Nordstrom, R. B. McCleskey, T. Barkay, and C. Vetriani, Earth Planet. Sci. Lett. 279, 86 (2009).

    Article  CAS  Google Scholar 

  36. E. Sunderland, C. Driscoll, J. Hammitt, G. Prandjean, J. Evans, J. D. Blum, D. C. ChenEvers, D. Jaffe, R. Mason, S. Goho, and W. Jacobs, Environ. Sci. Tech. Lett. 50, 2117 (2016).

    Article  CAS  Google Scholar 

  37. W. Zheng and H. Hintelmann, Geochim. Cosmochim. Acta 73, 6704 (2009).

    Article  CAS  Google Scholar 

  38. M. Jimenez-Moreno, J. Barre, V. Perrot, S. Berail, R. C. Martín-Doimeadios, and D. Amouroux, Chemosphere 147, 430 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. L. Zhang, Y. Liu, L. Guo, D. Yang, Z. Fang, T. Chen, H. Ren, and B. Yu, Tectonophysics 79, 619 (2014).

    Google Scholar 

  40. A. L. Buchachenko, Russ. Chem. Rev. 78, 319 (2009).

    Article  CAS  Google Scholar 

  41. J. E. Sonke, Geochim. Cosmochim. Acta 75, 4577 (2011).

    Article  CAS  Google Scholar 

  42. S. Ghosh, Y. Xu, M. Humayun, and L. Odom, Geochem. Geophys. Geosyst. 9, 1 (2008).

    Article  CAS  Google Scholar 

  43. W. Zheng and H. Hintelmann, J. Phys. Chem. A 114, 4246 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. D. A. Kouznetsov and V. Richter, Int. Neurosci. 34, 1 (1987).

    Article  Google Scholar 

  45. A. L. Buchachenko D. A. Kuznetsov, and A. V. Shishkov, Phys. Chem. A 108, 707 (2004).

    Article  CAS  Google Scholar 

  46. K. Kritee, L. C. Motta, J. D. Blum, M. Tsui, and J. R. Reinfelder, ACS Earth Space Chem., Article ASAP. doi 10.1021/acsearthspacechem.7b00056

  47. R. A. Miserendino, J. R. D. Guimartaes, G. Schudel, S. Ghosh, J. M. Godoy, E. K. Silbergeld, P. S. J. Lees, and B. A. Bergquist, ACS Earth Space Chem., Article ASAP. doi 10.1021/acsearthspacechem.7b00089

  48. T. A. Jackson, Appl. Geochem. 71, 86 (2016).

    Article  CAS  Google Scholar 

  49. T. A. Jackson, Microbiol. J. 32, 799 (2015).

    CAS  Google Scholar 

  50. T. A. Jackson, Environ. Toxicol. Chem., 1 (2017). doi doi 10.1002/etc.3987

    Google Scholar 

  51. T. A. Jackson, Geomicrobiol. J. (2018). doi 10.1080/01490451.2017.1401182

    Google Scholar 

  52. S. Y. Kwon, J. D. Blum, K. J. Nadelhoffer, J. T. Dvonch, and M. T. Tsui, Sci. Total Environ. 532, 220 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. S. Y. Kwon, J. D. Blum, M. J. Carvan, N. Basu, J. A. Head, K. J. Nadelhoffer, and C. P. David, Environ. Sci. Technol. 46, 7527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. K. Kritee, T. Barkay, and J. D. Blum, Geochim. Cosmochim. Acta 73, 1285 (2009).

    Article  CAS  Google Scholar 

  55. D. Obrist, J. Kirk, L. Zhang, E. M. Sunderland, M. Jiskra, and N. E. Selin, Kungl. Vetenskapsakad. (2018). doi 10.1007/s13280-017-1004-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Buchachenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchachenko, A.L. Mercury Isotopes in Earth and Environmental Chemistry. Russ. J. Phys. Chem. B 12, 635–644 (2018). https://doi.org/10.1134/S1990793118040048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118040048

Keywords

Navigation