Skip to main content
Log in

Atmospheric Turbulence and Internal Gravity Waves Examined by the Method of Artificial Periodic Irregularities

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A method for studying the Earth’s ionosphere at altitudes of the mesosphere and lower thermosphere based on creating artificial periodic irregularities in the ionospheric plasma by means of powerful radio waves is breafly described. Methods for determining the temperature and density of the neutral component and the velocity of vertical and turbulent motions by measuring the characteristics of the signal backscattered by the irregularities are described. The results of experiments performed on a SURA heating facility aimed at a comprehensive investigation of the natural processes occurring in the Earth’s lower ionosphere due to the propagation of atmospheric waves and turbulent phenomena are examined. Based on measurements of the amplitude and phase of the signal scattered by periodic irregularities, the most important characteristics of the neutral and plasma components of the Earth’s atmosphere at altitudes of the mesosphere and lower thermosphere are determined. Further research on the subject is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  2. W. K. Hocking, J. Atmos. Terr. Phys. 58, 735 (1996).

    Article  Google Scholar 

  3. V. V. Belikovich, E. A. Benediktov, A. V. Tolmacheva, and N. V. Bakhmet’eva, Ionospheric Research by Means of Artificial Periodic Irregularities (IPF RAN, Nizh. Novgorod, 1999) [in Russian].

    Google Scholar 

  4. V. V. Belikovich, E. A. Benediktov, A. V. Tolmacheva, et al., Ionospheric Research by Means of Artificial Periodic Irregularities (Copernicus, Katlenburg-Lindau, Germany, 2002).

    Google Scholar 

  5. A. A. Khanan’yan, in Study of Dynamic Processes in Upper Atmosphere, Ed. by I. A. Lysenko (Gidrometeoizdat, Moscow, 1985), p. 59 [in Russian].

  6. A. A. Khanan’yan, Geomagn. Aeron. 24, 1023 (1984).

    Google Scholar 

  7. Yu. A. Kalgin and A. D. Danilov, Geomagn. Aeron. 33 (6), 119 (1993).

    Google Scholar 

  8. C. M. Hall, C. E. Meek, and A. N. Manson, J. Atm. Sol.-Terr. Phys. 60, 437 (1998).

    Article  Google Scholar 

  9. C. M. Hall, A. H. Manson, and C. E. Meek, J. Geophys. Res. 103, 28769 (1998).

    Article  Google Scholar 

  10. I. F. Galedin, I. O. Neelov, and S. V. Pakhomov, Tr. Tsentr. Astrofiz. Observ., No. 144, 22 (1981).

    Google Scholar 

  11. M. N. Vlasov and M. C. Kelley, Ann. Geopys. 32, 431 (2014).

    Article  Google Scholar 

  12. C. M. Hall, S. E. Holmen, C. E. Meek, et al., Atmos. Chem. Phys. 16, 2299 (2016).

    Article  CAS  Google Scholar 

  13. D. C. Fritts and M. J. Alexander, Rev. Geophys. 41, 1003 (2003).

    Article  Google Scholar 

  14. G. I. Grigor’ev, Radiophys. Quantum Electron. 42, 1 (1999).

    Article  Google Scholar 

  15. C. O. Hines, in Thermospheric Circulation, Ed. by W. Webb (MIT Press, Cambridge, 1972; Mir, Moscow, 1975), rus. p.85.

  16. I. V. Karpov and S. P. Kshevetskii, Geomagn. Aeron. 54, 513 (2014).

    Article  Google Scholar 

  17. N. V. Bakhmet’eva, V. V. Belikovich, G. I. Grigor’ev, et al., Radiophys. Quantum Electron. 45, 211 (2002).

    Article  Google Scholar 

  18. B. N. Gershman, Ionospheric Plasma Dynamics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  19. V. V. Belikovich and E. A. Mareev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 30, 852 (1987).

    Google Scholar 

  20. V. V. Belikovich and E. A. Benediktov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 35, 99 (1995).

    Google Scholar 

  21. N. V. Bakhmet’eva, V. V. Belikovich, and G. S. Korotina, Geomagn. Aeron. 36, 724 (1996).

    Google Scholar 

  22. S. S. Zilitinkevich, in Proceedings of the 12th Conference of Young Scientists on Interaction of Fields and Radiation with Matter 2011 (ISZF SO RAN, 2011), p.20.

    Google Scholar 

  23. O. G. Chkhetiani and S. L. Shalimov, Dokl. Earth Sci. 431, 345 (2010).

    Article  CAS  Google Scholar 

  24. O. G. Chkhetiani and S. L. Shalimov, Geomagn. Aeron. 53, 177 (2013).

    Article  Google Scholar 

  25. M. F. Larsen, D. L. Hysell, Q. H. Zhou, et al., J. Geophys. Res. 112, A06321 (2007).

    Google Scholar 

  26. N. V. Bakhmet’eva, G. I. Grigor’ev, and V. G. Lapin, Radiophys. Quantum Electron. 57, 360 (2014).

    Article  Google Scholar 

  27. N. V. Bakhmet’eva, G. I. Grigor’ev, and V. G. Lapin, in Proceedings of the International Conference on Wave Transformation, Coherent Structures and Turbulence 2014, Moscow, Nov. 24–27, 2014, p.345.

  28. A. V. Tolmacheva, G. I. Grigor’ev, and N. V. Bakhmet’eva, Russ. J. Phys. Chem. B 7, 663 (2013).

    Article  CAS  Google Scholar 

  29. N. V. Bakhmetieva, V. N. Bubukina, V. D. Vyakhirev, et al., in Proceedings of the International Conference on Atmosphere, Ionosphere, Safety, Kaliningrad, 2016, p.197.

  30. N. V. Bakhmet’eva, V. V. Belikovich, G. I. Grigor’ev, et al., Radiophys. Quantum Electron. 45, 211 (2002).

    Article  Google Scholar 

  31. N. V. Bakhmet’eva, G. I. Grigor’ev, and A. V. Tolmacheva, Radiophys. Quantum Electron. 53, 623 (2010).

    Article  Google Scholar 

  32. J. D. Whitehead, J. Atmos. Terr. Phys. 51, 401 (1989).

    Article  Google Scholar 

  33. B. N. Gershman, Yu. A. Ignat’ev, and G. Kh. Kamenetskaya, Mechanism of the Ionospheric Sporadic E-Layer Formation at Different Latitudes (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  34. N. V. Bakhmet’eva, V. V. Belikovich, M. N. Egerev, et al., Radiophys. Quantum Electron. 53 (2), 69 (2010).

    Article  Google Scholar 

  35. N. V. Bakhmet’eva, V. N. Bubukina, V. D. Vyakhirev, et al., Radiophys. Quantum Electron. 59 (10), 1 (2016).

    Google Scholar 

  36. N. V. Bakhmet’eva, V. D. Vyakhirev, E. E. Kalinina, et al., Geomagn. Aeron. 57, 58 (2017).

    Article  Google Scholar 

  37. K. A. Karimov, Internal Gravitation Waves in Upper Atmosphere (Ilim, Frunze, 1983) [in Russian].

    Google Scholar 

  38. P. M. Nagorskii, Izv. Vyssh. Uchebn. Zaved., Fiz. 39 (1), 36 (1999).

    Google Scholar 

  39. N. V. Bakhmet’eva, V. V. Belikovich, E. A. Benediktov, et al., Geomagn. Aeron. 36, 761 (1996).

    Google Scholar 

  40. V. V. Belikovich, E. A. Benediktov, E. A. Mareev, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 26 (1), 36 (1983).

    Google Scholar 

  41. J. Vierinen, A. Kero, and M. T. Rietveld, J. Atmos. Sol.-Terr. Phys. 105–106, 253 (2013).

    Article  Google Scholar 

  42. D. L. Hysell, M. J. McCarrick, C. T. Fallen, et al., Geophys. Rev. Lett. 42, 1297 (2015).

    Article  Google Scholar 

  43. N. V. Bakhmetieva, S. M. Grach, E. N. Sergeev, et al., Radio Sci. 51, 999 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bakhmet’eva.

Additional information

Original Russian Text © N.V. Bakhmet’eva, G.I. Grigoriev, A.V. Tolmacheva, E.E. Kalinina, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 5, pp. 19–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhmet’eva, N.V., Grigoriev, G.I., Tolmacheva, A.V. et al. Atmospheric Turbulence and Internal Gravity Waves Examined by the Method of Artificial Periodic Irregularities. Russ. J. Phys. Chem. B 12, 510–521 (2018). https://doi.org/10.1134/S1990793118030041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118030041

Keywords

Navigation