Skip to main content
Log in

Simulation of the Oxygen Dissociation Reaction under Thermally Nonequilibrium Conditions: Models, Trajectory Calculations, and the Experiment

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The aim of this work was to perform a comparative study of the well-known models of physicochemical processes based on the dissociation of oxygen as an example. The comparison was conducted with the use of the available results of calculations obtained by a method of quasi-classical trajectories. The principle of the information provision of models and the complexity of their computational implementation were taken into account in the study. The dissociation process was considered in the framework of one-temperature, two-temperature, and level approximations. The MD Trajectory software was used for the simulation of molecular reaction dynamics. Computer experiments with theoretical models were carried out using an Internet catalog of physical and chemical process models. A modification of the Marrone–Treanor level model was proposed for the approximation of the rate constant of oxygen dissociation obtained by the method of quasi-classical trajectories in the level approximation. The empirical parameter of this model was replaced by a new parameter, which took into account its possible dependence on translational temperature. For a two-temperature approximation, recommendations were formulated in terms of the applicability ranges of the models taking into account the vibrational temperature of dissociating molecules based on a comparison of the results of trajectory calculations and theoretical models. The results of trajectory calculations and theoretical models in a two-temperature approximation were also compared with the available experimental data on the dissociation of oxygen molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kunova, E. Kustova, M. Mekhonoshina, and E. Nagnibeda, Chem. Phys. 463, 70 (2015).

    Article  CAS  Google Scholar 

  2. E. G. Kolesnichenko and Y. E. Gorbachev, Shock Waves 23, 635 (2013).

    Article  Google Scholar 

  3. E. Kustova, E. Nagnibeda, G. Oblapenko, A. Savelev, and I. Sharafutdinov, Chem. Phys. 464, 1 (2016).

    Article  CAS  Google Scholar 

  4. J. A. Manion, R. E. Huie, R. D. Levin, D. R. Burgess, Jr., V. L. Orkin, W. Tsang, W. S. McGivern, J. W. Hudgens, V. D. Knyazev, D. B. Atkinson, E. Chai, A. M. Tereza, C. -Y. Lin, T. C. Allison, W. G. Mallard, et al., NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0, Release 1.6.8 (Natl. Inst. Standards Technol., Gaithersburg, Maryland, 2015). http://kinetics.nist.gov/.

    Google Scholar 

  5. E. A. Kovach, O. E. Krivonosova, S. A. Losev, et al., Report No. 3312 (Inst. Mekh., Mosk. Gos. Univ., Moscow, 1986).

  6. E. A. Kovach, S. A. Losev, and A. L. Sergievskaya, Khim. Fiz. 14 (9), 44 (1995).

    CAS  Google Scholar 

  7. S. A. Losev, A. L. Sergievskaya, and E. A. Kovach, Mat. Model. 17 (8), 95 (2005).

    Google Scholar 

  8. E. A. Kovach, S. A. Losev, A. L. Sergievskaya, et al., Fiz. Khim. Kinet. Gaz. Dinam. 10 (2010). http://chemphys.edu.ru/issues/2010-10/articles/331/.

  9. B. F. Gordiets, S. A. Losev, A. L. Sergievskaya, et al., Khim. Fiz. 23 (1), 9 (2004).

    CAS  Google Scholar 

  10. M. J. Pogosbekian, A. L. Sergievskaia, and S. A. Losev, Chem. Phys. 328, 371 (2006).

    Article  CAS  Google Scholar 

  11. M. Yu. Pogosbekyan and A. L. Sergievskaya, Fiz. Khim. Kinet. Gaz. Dinam. 15 (2014). http://chemphys.edu.ru/issues/2014-15-3/articles/227/.

  12. A. Varandas and A. Pais, Mol. Phys. 65, 843 (1988).

    Article  CAS  Google Scholar 

  13. M. Yu. Pogosbekyan and S. A. Losev, Khim. Fiz. 22 (6), 38 (2003).

    CAS  Google Scholar 

  14. F. Esposito, I. Armenise, G. Capitta, and M. Capitelli, Chem. Phys. 351, 91 (2008).

    Article  CAS  Google Scholar 

  15. D. A. Andrienko and I. D. Boyd, Phys. Fluids 27, 116101 (2015).

    Article  CAS  Google Scholar 

  16. L. B. Ibragimova, A. L. Sergievskaya, and O. P. Shatalov, Fluid Dyn. 48, 550 (1988).

    Article  CAS  Google Scholar 

  17. I. E. Zabelinskii, L. B. Ibragimova, and O. P. Shatalov, Fluid Dyn. 45, 485 (2010).

    Article  CAS  Google Scholar 

  18. L. B. Ibraguimova, A. L. Sergievskaya, V. Yu. Levashov, O. P. Shatalov, Yu. V. Tunik, and I. E. Zabelinskii, J. Chem. Phys. 139, 034317–1 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. C. Park, J. Thermophys. Heat Transfer 7, 385 (1993).

    Article  CAS  Google Scholar 

  20. E. A. Kovach, S. A. Losev, A. L. Sergievskaya, and N. Khrapak, Fiz. Khim. Kinet. Gaz. Dinam. 10 (2010). http://chemphys.edu.ru/issues/2010-10/articles/334/.

  21. A. S. Savel’ev and E. V. Kustova, Vestn. SPbGU, Ser. 1 2, 266 (2015).

    Google Scholar 

  22. O. Kunova, E. Kustova, and A. Savelev, Chem. Phys. Lett. 659, 80 (2016).

    Article  CAS  Google Scholar 

  23. C. Park, AIAA-Paper No. 88-0458 (AIAA, 1988).

  24. Physicochemical Processes in Gas Dynamics, Handbook, Vol. 1: Dynamics of Physicochemical Processes in Gas and Plasma, Ed. by G. G. Chernyi and S. A. Losev (Nauchnyi Mir, Moscow, 2007) [in Russian].

  25. E. A. Kovach, S. A. Losev, A. L. Sergievskaya, and N. Khrapak, Fiz. Khim. Kinet. Gaz. Dinam. 10 (2010). http://chemphys.edu.ru/issues/2010-10/articles/333/.

  26. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., Otkryt. Sist., SUBD, No. 7, 36 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Pogosbekyan.

Additional information

Original Russian Text © M.Yu. Pogosbekyan, A.L. Sergievskaya, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 4, pp. 20–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogosbekyan, M.Y., Sergievskaya, A.L. Simulation of the Oxygen Dissociation Reaction under Thermally Nonequilibrium Conditions: Models, Trajectory Calculations, and the Experiment. Russ. J. Phys. Chem. B 12, 208–218 (2018). https://doi.org/10.1134/S1990793118020239

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118020239

Keywords

Navigation