Skip to main content
Log in

Composition and Structure of Complexes Formed in Aqueous Solutions of Trifluoroacetic Acid According to IR Spectroscopy Data

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The composition and structure of complexes that formed in aqueous solutions of trifluoroacetic acid were studied by frustrated multiple total internal reflection IR spectroscopy (FMTIR). Two types of complexes with a molecular structure formed: trimers CF3COOH · (H2O)2 and cyclic tetramers (CF3COOH)2 · (H2O)2, in which the molecules of the components are arranged in pairs. In the range of acid concentrations from 100% to [H2O]/[CF3COOH] = 1: 1, only these tetramers formed, and all added water was bound into these hydrates. In more dilute solutions (up to [H2O]/[CF3COOH] = 2: 1), CF3COOH · (H2O)2 complexes formed along with tetramers; at a double excess of H2O, the components of the solution were completely bound into these trimers. In dilute solutions (from 0 to 3.6 M CF3COOH), the acid is completely dissociated into H5O +2 and CF3COO ions hydrated with water molecules. In the range of medium concentrations (from 3.6 M to [H2O]/[CF3COOH] = 2: 1), the solutions contain both these ions and CF3COOH · (H2O)2 dihydrates. For this range of compositions of the CF3COOH−H2O system, the concentrations of H5O +2 ions and CF3COOH · (H2O)2 dihydrates were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Yukhnevich, E. G. Tarakanova, V. D. Maiorov, and N. B. Librovich, Russ. Chem. Rev. 64, 901 (1995).

    Article  Google Scholar 

  2. Ch. E. Wujcik, D. Zehavi, and J. N. Seiber, Chemosphere 36, 1233 (1998).

    Article  CAS  Google Scholar 

  3. Sh. Kutsuna and H. Hori, Atmos. Environ. 42, 1399 (2008).

    Article  CAS  Google Scholar 

  4. T. S. S. R. Murty and K. S. Pitzer, J. Phys. Chem. 73, 1426 (1969).

    Article  CAS  Google Scholar 

  5. R. L. Redington and K. C. Lin, Spectrochim. Acta, Part A 27, 2445 (1975).

    Article  Google Scholar 

  6. I. S. Perelygin and A. M. Afanas’eva, Zh. Strukt. Khim. 14, 1033 (1973).

    CAS  Google Scholar 

  7. E. G. Tarakanova and G. V. Yukhnevich, J. Struct. Chem. 55, 1409 (2014).

    Article  CAS  Google Scholar 

  8. B. Ouyang, T. G. Starkey, and B. J. Howard, J. Phys. Chem. A 111, 6165 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. F. Ito, Chem. Phys. 382, 52 (2011).

    Article  CAS  Google Scholar 

  10. P. Krishnakumar and D. K. Maity, J. Phys. Chem. A 118, 5443 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. M. W. Hnat, Z. Latajka, Z. Milke, and H. Ratajczak, J. Mol. Struct. 129, 229 (1985).

    Article  Google Scholar 

  12. F. Ito, Vibrat. Spectrosc. 71, 57 (2014).

    Article  CAS  Google Scholar 

  13. V. D. Maiorov, N. B. Librovich, and M. I. Vinnik, Zh. Fiz. Khim. 53, 1036 (1979).

    CAS  Google Scholar 

  14. N. G. Zarakhani, L. A. Lobanova, and N. P. Vorob’eva, Zh. Fiz. Khim. 45, 1488 (1971).

    CAS  Google Scholar 

  15. U. A. Spitzer, T. V. Toone, and R. Stewart, Can. J. Chem. 54, 440 (1976).

    Article  CAS  Google Scholar 

  16. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, London, Sidney, 1967).

    Google Scholar 

  17. N. Fusion, M.-L. Josen, E. A. Jones, and J. R. Lawson, J. Chem. Phys. 20, 1627 (1952).

    Article  Google Scholar 

  18. R. E. Kagarise, J. Chem. Phys. 27, 519 (1957).

    Article  CAS  Google Scholar 

  19. R. L. Redington, Spectrochim. Acta, Part A 31, 1699 (1975).

    Article  Google Scholar 

  20. N. B. Librovich, V. V. Burdin, V. D. Maiorov, and I. S. Kislina, Khim. Fiz. 19 (4), 41 (2000).

    CAS  Google Scholar 

  21. V. D. Maiorov, I. S. Kislina, and E. G. Tarakanova, Russ. J. Phys. Chem. B 11, 37 (2017).

    Article  CAS  Google Scholar 

  22. N. B. Librovich and V. D. Maiorov, Russ. Chem. Bull. 26, 621 (1977).

    Article  Google Scholar 

  23. A. P. Kirilova, V. D. Maiorov, A. I. Serebryanskaya, N. B. Librovich, and E. N. Gur’yanova, Russ. Chem. Bull. 34, 1366 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Maiorov.

Additional information

Original Russian Text © V.D. Maiorov, G.I. Voloshenko, I.S. Kislina, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 4, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, V.D., Voloshenko, G.I. & Kislina, I.S. Composition and Structure of Complexes Formed in Aqueous Solutions of Trifluoroacetic Acid According to IR Spectroscopy Data. Russ. J. Phys. Chem. B 12, 185–191 (2018). https://doi.org/10.1134/S1990793118020197

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118020197

Keywords

Navigation