Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 28–35 | Cite as

The Properties of Strings Formed in the Homochiral Solutions of Trifluoroacetylated Amino Alcohols in Cyclohexane

  • M. A. Tregubova
  • M. G. Mikhaleva
  • A. A. Kirsankin
  • S. N. Nikolskii
Structure of Chemical Compounds. Spectroscopy
  • 8 Downloads

Abstract

The strings formed in the solutions of trifluoroacetylated amino alcohols in cyclohexane were studied. It was found that microscopic strings with the diameter d ∼ 1 μm were woven from tightly coupled rigid submicroscopic strings with the diameter d ∼ 0.1 μm in increments of >100 μm. Therefore, the compound strings are transparent, and they usually look like an unstructured cylinder. Microscopic strings can be tightly combined in strings to 60 μm in diameter. Submicroscopic strings are arranged almost parallel to the axis of a microscopic string. The microscopic string acts as a polarizer: it transmits light polarized across its axis and absorbs light polarized along the axis. The majority of these properties can be explained based on the assumption that a connection between the strings of all hierarchical levels in cyclohexane is stronger than that in solvents with different string morphology.

Keywords

supramolecular structure string chirality polarized light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Lu and R. G. Weiss, Langmuir 11, 3630 (1995).CrossRefGoogle Scholar
  2. 2.
    K. Inoue, Y. Ono, Y. Kanekiyo, et al., Org. Chem. 64, 2933 (1999).CrossRefGoogle Scholar
  3. 3.
    S. Laan, B. L. Feringa, R. M. Kellogg, and J. Esch, Langmuir 18, 7136 (2002).CrossRefGoogle Scholar
  4. 4.
    S. Vauthey, S. Santoso, H. Gong, et al., Proc. Natl. Acad. Sci. 99, 5355 (2002).CrossRefGoogle Scholar
  5. 5.
    C. Li, N. J. Buurma, I. Haq, et al., Langmuir 21, 11026 (2005).CrossRefGoogle Scholar
  6. 6.
    C. Zhan, P. Gao, and M. Liu, Chem. Commun., 462 (2005).Google Scholar
  7. 7.
    M. George, G. P. Funkhouser, P. Terech, and R. G. Wise, Langmuir 22, 7885 (2006).CrossRefGoogle Scholar
  8. 8.
    S. J. Langford, M. J. Latter, V. L. Lau, et al., Org. Lett. 8, 1371 (2006).CrossRefGoogle Scholar
  9. 9.
    G. Godeau and D. Barthelemy, Langmuir 25, 8447 (2009).CrossRefGoogle Scholar
  10. 10.
    C. C. Lee, C. Grenier, E. W. Meijer, and A. P. H. J. Schenning, Chem. Soc. Rev. 38, 671 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Madsen, S. P. Armes, K. Bertal, et al., Biomacromolecules 10, 1875 (2009).CrossRefGoogle Scholar
  12. 12.
    B. G. Bag, G. C. Maity, and S. R. Pramanik, Supramol. Chem. 17, 383 (2010).CrossRefGoogle Scholar
  13. 13.
    A. A. Bredikhin, Z. A. Bredikhina, and A. V. Pashagin, Mendeleev Commun. 21, 144 (2011).CrossRefGoogle Scholar
  14. 14.
    R. G. Weiss and P. Terech, Molecular Gels (Springer, Dordecht, 2006).CrossRefGoogle Scholar
  15. 15.
    R. G. Kostyanovsky, D. F. Lenev, O. N. Krutius, and A. A. Stankevich, Mendeleev Commun. 15, 140 (2005).CrossRefGoogle Scholar
  16. 16.
    S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 317 (2012).CrossRefGoogle Scholar
  17. 17.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ., Ithaca, London, 1979).Google Scholar
  18. 18.
    D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).CrossRefGoogle Scholar
  19. 19.
    M. Kleman and O. D. Lavrentovich, Soft Matter Physics (Springer, New York, 2003).Google Scholar
  20. 20.
    S. V. Stovbun, Doctoral (Phys. Math.) Dissertation (Inst. Chem. Phys. RAS, Moscow, 2012).Google Scholar
  21. 21.
    O. Lebel, M. E. Perron, T. Maris, et al., Chem. Mater. 18, 3616 (2006).CrossRefGoogle Scholar
  22. 22.
    G. John, B. V. Shankar, S. R. Jadhav, and P. K. Vemula, Langmuir 26, 17843 (2010).CrossRefGoogle Scholar
  23. 23.
    M. George and R. G. Weiss, Acc. Chem. Res. 39, 489 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Prasanthkumar, A. Saeki, S. Seki, and A. Ajayaghosh, J. Am. Chem. Soc. 132, 8866 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Peng, K. Liu, J. Liu, et al., Langmuir 24, 2992 (2008).CrossRefGoogle Scholar
  26. 26.
    M. George and R. G. Weiss, Langmuir 19, 8168 (2003).CrossRefGoogle Scholar
  27. 27.
    X. Huang, P. Terech, S. R. Raghavan, and R. G. Weiss, J. Am. Chem. Soc. 127, 4336 (2005).CrossRefGoogle Scholar
  28. 28.
    S. V. Stovbun, Russ. J. Phys. Chem. B 5, 546 (2011).CrossRefGoogle Scholar
  29. 29.
    S. V. Stovbun, O. N. Krutius, A. M. Zanin, D. S. Skorobogat’ko, and R. G. Kostyanovskii, Russ. J. Phys. Chem. B 5, 846 (2011).CrossRefGoogle Scholar
  30. 30.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, Dokl. Phys. Chem. 442, 36 (2012).CrossRefGoogle Scholar
  31. 31.
    S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 274 (2012).CrossRefGoogle Scholar
  32. 32.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, F. V. Bulygin, V. S. Fedorenko, V. L. Lyaskovskii, and I. A. Bilenko, Izmerit. Tekh., No. 6, 70 (2012).Google Scholar
  33. 33.
    S. V. Stovbun and A. A. Skoblin, Khim. Fiz. 31 (9), 24 (2012).Google Scholar
  34. 34.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, and S. V. Chekalin, Khim. Fiz. 31 (11), 17 (2012).Google Scholar
  35. 35.
    S. V. Stovbun, A. A. Skoblin, and A. I. Mikhailov, Khim. Fiz. 32 (2), 30 (2013).Google Scholar
  36. 36.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, A. I. Mikhailov, F. V. Bulygin, V. S. Fedorenko, and V. L. Lyaskovskii, Khim. Fiz. 32 (3), 12 (2013).Google Scholar
  37. 37.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, Ya. A. Litvin, V. A. Tverdislov, A. A. Kirsankin, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 8, 620 (2014).CrossRefGoogle Scholar
  38. 38.
    S. V. Stovbun, A. A. Skoblin, F. V. Bulygin, V. L. Minaev, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, S. V. Chekalin, and S. E. Permyakov, Russ. J. Phys. Chem. B 9, 193 (2015).CrossRefGoogle Scholar
  39. 39.
    S. V. Stovbun, A. A. Skoblin, A. I. Mikhailov, M.V.Grishin, B. R. Shub, A. M. Zanin, and D. P. Shashkin, Ross. Nanotekhnol. 7 (7–8), 107 (2012).Google Scholar
  40. 40.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, D. P. Shashkin, A. I. Mikhailov, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 7, 1 (2013).CrossRefGoogle Scholar
  41. 41.
    S. V. Stovbun, A. A. Skoblin, and A. A. Berlin, Dokl. Phys. Chem. 450, 111 (2013).CrossRefGoogle Scholar
  42. 42.
    Ya. A. Litvin, A. A. Skoblin, and S. V. Stovbun, Russ. J. Phys. Chem. B 11, 146 (2017).CrossRefGoogle Scholar
  43. 43.
    A. Gansäuer, I. Winkler, T. Klawonn, et al., Organometallics 28, 1377 (2008).CrossRefGoogle Scholar
  44. 44.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, R. G. Kostyanovskii, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 5, 1019 (2011).CrossRefGoogle Scholar
  45. 45.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, M. V. Grishin, B. R. Shub, Yu. M. Rybin, I. M. Ageev, G. G. Shishkin, and V. A. Tverdislov, Byull. Eksp. Biol. Med. 154 (7), 41 (2012).Google Scholar
  46. 46.
    S. V. Stovbun, A. A. Skoblin, and V. A. Tverdislov, Biophysics 59, 876 (2014).CrossRefGoogle Scholar
  47. 47.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, M. G. Mikhaleva, D. V. Zlenko, and V. A. Tverdislov, Mosc. Univ. Phys. Bull. 70, 51 (2015).CrossRefGoogle Scholar
  48. 48.
    S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 278 (2012).CrossRefGoogle Scholar
  49. 49.
    S. V. Stovbun, A. M. Zanin, D. S. Skorobogat’ko, A. A. Skoblin, Ya. A. Litvin, A. I. Mikhailov, O. N. Krutius, and R. G. Kostyanovskii, Russ. J. Phys. Chem. B 6, 341 (2012).CrossRefGoogle Scholar
  50. 50.
    S. V. Stovbun and A. A. Skoblin, Khim. Fiz. 31 (7), 7 (2012).Google Scholar
  51. 51.
    S. V. Stovbun, A. A. Skoblin, F. V. Bulygin, V. L. Minaev, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, S. V. Chekalin, and S. E. Permyakov, Russ. J. Phys. Chem. B 9, 193 (2015).CrossRefGoogle Scholar
  52. 52.
    I. I. Artobolevskii, Theory of Mechanisms and Machines, The Handbook for Higher Schools, 4th ed. (Nauka, Moscow, 1988) [in Russian].Google Scholar
  53. 53.
    S. V. Stovbun, A. A. Skoblin, Ya. A. Litvin, A. A. Kirsankin, M. V. Grishin, B. R. Shub, Ya. V. Zubavichus, A. A. Veligzhanin, L. D. Popov, E. A. Raspopova, and Yu. N. Tkachenko, Russ. J. Phys. Chem. B 8, 801 (2014).CrossRefGoogle Scholar
  54. 54.
    S. V. Stovbun, A. A. Skoblin, Ya. A. Litvin, M. G. Mikhaleva, and V. A. Tverdislov, Mosc. Univ. Phys. Bull. 70, 45 (2015).CrossRefGoogle Scholar
  55. 55.
    A. A. Skoblin and S. V. Stovbun, Byull. Eksp. Biol. Med. 159, 607 (2015).CrossRefGoogle Scholar
  56. 56.
    A. R. Hirst, I. A. Coates, T. R. Boucheteau, et al., J. Am. Chem. Soc. 130, 9113 (2008).CrossRefGoogle Scholar
  57. 57.
    P. Terech and R. G. Weiss, Chem. Rev. 97, 3133 (1997).CrossRefGoogle Scholar
  58. 58.
    M. Côte, T. Nicholls, D. W. Knight, I. R. Morgan, P. G. Rogueda, S. M. King, R. K. Heenan, and P. C. Griffiths, Langmuir 25, 8678 (2009).CrossRefGoogle Scholar
  59. 59.
    M. George and R. G. Weiss, Langmuir 19, 1017 (2003).CrossRefGoogle Scholar
  60. 60.
    Ya. A. Litvin, A. N. Shchegolikhin, A. A. Skoblin, and S. V. Stovbun, Russ. J. Phys. Chem. B 10, 725 (2016).CrossRefGoogle Scholar
  61. 61.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, D. P. Shashkin, V. A. Tverdislov, and A. A. Berlin, Dokl. Phys. Chem. 450, 138 (2013).CrossRefGoogle Scholar
  62. 62.
    D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 613 (2014).CrossRefGoogle Scholar
  63. 63.
    S. V. Stovbun, A. A. Skoblin, and A. M. Zanin, Russ. J. Phys. Chem. B 8, 293 (2014).CrossRefGoogle Scholar
  64. 64.
    A. A. Skoblin, A. M. Zanin, and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 302 (2014).CrossRefGoogle Scholar
  65. 65.
    A. A. Skoblin, Ya. A. Litvin, A. M. Zanin, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, S. V. Chekalin, and S. V. Stovbun, Vestn. MGOU, Ser.: Estestv. Nauki, No. 1, 108 (2014).Google Scholar
  66. 66.
    S. V. Stovbun, A. A. Skoblin, and V. A. Tverdislov, Byull. Eksp. Biol. Med., No. 12, 643 (2011).Google Scholar
  67. 67.
    J. Israelachvili, Intermolecular and Surface Forces (Nauchnyi Mir, Moscow, 2011; Academic, New York, 2011).Google Scholar
  68. 68.
    D. V. Zlenko and S. V. Stovbun, Komp’yut. Issled. Model. 5, 813 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Tregubova
    • 1
  • M. G. Mikhaleva
    • 1
  • A. A. Kirsankin
    • 1
  • S. N. Nikolskii
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations