Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 115–119 | Cite as

Energy Content of HMX–Silicon Nanopowder Mixtures

  • M. N. Makhov
Combustion, Explosion, and Shock Waves
  • 12 Downloads

Abstract

Detonation calorimetry studies have shown that the addition of a silicon nanopowder (n-Si) to HMX leads to a significant increase in the heat of explosion. However, the heat of explosion of composites with n-Si is lower than that of composites containing boron and aluminum (particularly aluminum nanoparticles). Combustible additives have been arranged in orders taking into account their effect on the energy content of the explosive.

Keywords

heat of explosion n-Si explosive composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. C. Koch and D. Clement, Propellants, Explos., Pyrotech. 32 (3), 205 (2007).CrossRefGoogle Scholar
  2. 2.
    S. K. Lazarouk, A. V. Dolbik, P. V. Jaguiro, V. A. Labunov, and V. E. Borisenko, Semiconductors 39, 881 (2005).CrossRefGoogle Scholar
  3. 3.
    Yu. M. Mikhailov, V. A. Garanin, Yu. V. Ganin, T. K. Goncharov, L. V. Ganina, and G. G. Zegrya, Russ. Chem. Bull. 65, 2400 (2016).CrossRefGoogle Scholar
  4. 4.
    B. P. Berger, B. Haas, P. Folly, et al., in Proceedings of the 33rd International Pyrotechnics Seminar, Ed. by F. J. Schelling (IPSUSA, Denver, 2006), p. 81.Google Scholar
  5. 5.
    A. Yu. Dolgoborodov, A. N. Streletskii, M. N. Makhov, V. A. Teselkin, Sh. L. Guseinov, P. A. Storozhenko, and V. E. Fortov, Russ. J. Phys. Chem. B 6, 523 (2012).CrossRefGoogle Scholar
  6. 6.
    M. N. Makhov and A. Yu. Dolgoborodov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2012), No. 5, p. 314 [in Russian].Google Scholar
  7. 7.
    M. N. Makhov, in Proceedings of the International Conference—7th Kharitonov Thematic Readings (RFYaTs-VNIIEF, Sarov, 2005), p. 53.Google Scholar
  8. 8.
    M. N. Makhov, in Proceedings of the 33rd International Annual Conference of ICT, June 25–28, 2002, Karlsruhe, Germany (Fraunhofer Inst. Chem. Technol., Pfinztal, 2002), p. 73.Google Scholar
  9. 9.
    V. I. Pepekin, M. N. Makhov, and A. Ya. Apin, Fiz. Goreniya Vzryva 8, 135 (1972).Google Scholar
  10. 10.
    A. P. Il’in and A. A. Reshetov, Fiz. Goreniya Vzryva 35 (4), 92 (1999).Google Scholar
  11. 11.
    P. A. Storozhenko, Sh. L. Guseinov, and S. I. Malashin, Nanotechnol. Russ. 4, 262 (2009).CrossRefGoogle Scholar
  12. 12.
    A. N. Jigatch, I. O. Leipunskii, M. L. Kuskov, N. I. Stoenko, and V. B. Storozhev, Instrum. Exp. Tech. 43, 839 (2000).CrossRefGoogle Scholar
  13. 13.
    M. N. Makhov, M. F. Gogulya, A. Yu. Dolgoborodov, et al., Fiz. Goreniya Vzryva 40 (4), 96 (2004).Google Scholar
  14. 14.
    V. I. Pepekin, M. N. Makhov, and Yu. A. Lebedev, Dokl. Akad. Nauk SSSR 232, 852 (1977).Google Scholar
  15. 15.
    M. N. Makhov, Khim. Fiz. 19 (6), 52 (2000).Google Scholar
  16. 16.
    M. N. Makhov, in Combustion and Explosion, Ed. by S.M. Frolov (Torus Press, Moscow, 2011), No. 4, p. 307 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations