Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 108–114 | Cite as

Radiation Characteristics of Air in the Ultraviolet and Vacuum Ultraviolet Regions of the Spectrum behind the Front of Strong Shock Waves

  • N. G. Bykova
  • I. E. Zabelinskii
  • L. B. Ibragimova
  • P. V. Kozlov
  • S. V. Stovbun
  • A. M. Tereza
  • O. P. Shatalov
Combustion, Explosion, and Shock Waves
  • 9 Downloads

Abstract

Experiments on the measurement of air emission intensity behind the front of incident shock wave were carried out in a shock tube at an initial pressure of 0.25 Torr and shock wave velocities of 6.3–8.4 km/s. The emission intensity was measured in absolute units both in the form of an integral spectral distribution in a wavelength range of 120−400 nm (panoramic spectra) and as the time evolution of emission at the individual atomic lines of nitrogen and oxygen atoms. The results of the measurements demonstrated that the emission in air behind a shock wave in the vacuum ultraviolet region of 120–200 nm had a much higher radiation flux level than the emission in a range of 200–900 nm.

Keywords

shock waves vacuum ultraviolet emission spectroscopic measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Grinstead, M. C. Wilder, J. Olejniczak, et al., in Proc. of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (AIAA, 2008), Paper No. 2008-1244.Google Scholar
  2. 2.
    B. A. Cruden, R. Martinez, J. H. Grinstead, and J. Olejniczak, in Proc. of the 41st AIAA Thermophysics Conference, San Antonio, TX (AIAA, 2009), Paper No. 2009-4240.Google Scholar
  3. 3.
    P. V. Kozlov and Yu. V. Romanenko, Fiz. Khim. Kinet. Gaz. Din. 15, 221 (2014). http://chemphys.edu.ru/issues/2014-15-2/articles/221/Google Scholar
  4. 4.
    C. O. Johnston, in Proc. of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (AIAA, 2008), Paper No. 2008-1245.Google Scholar
  5. 5.
    U. A. Sheikh, R. G. Morgan, and T. J. McIntyre, AIAA J. 53, 3589 (2015).CrossRefGoogle Scholar
  6. 6.
    J. Shang and S. Surzhikov, Prog. Aerospace Sci. 53, 46 (2012).CrossRefGoogle Scholar
  7. 7.
    A. M. Brandis, C. Johnston, and B. Cruden, and D. K. Prabhu, in Proc. of the 43rd AIAA Thermophysics Conference, New Orleans, Louisiana (AIAA, 2012), Paper No. 2012–2865.Google Scholar
  8. 8.
    S. Surzhikov, J. Chem. Phys. 398, 56 (2012).Google Scholar
  9. 9.
    C. T. Surzhikov and M. P. Shuvalov, High Temp. 51, 408 (2013).CrossRefGoogle Scholar
  10. 10.
    A. M. Brandis, C. O. Johnston, B. A. Cruden, D. Prabhu, and D. Bose, J. Thermophys. Heat Transfer 29, 209 (2015).CrossRefGoogle Scholar
  11. 11.
    T. A. Hermann, F. Zander, H. Fulge, S. Loehle, and S. Fasoulas, in Proc. of the 45th AIAA Plasmadynamics and Lasers Conference, Reston, VA (AIAA, 2014), Paper No. 2014–2536.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. G. Bykova
    • 1
  • I. E. Zabelinskii
    • 1
  • L. B. Ibragimova
    • 1
  • P. V. Kozlov
    • 1
  • S. V. Stovbun
    • 2
  • A. M. Tereza
    • 2
  • O. P. Shatalov
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations