Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 120–128 | Cite as

Acceleration of Mass Transfer under Dynamic Loading

Combustion, Explosion, and Shock Waves
  • 1 Downloads

Abstract

Under dynamic loading, the interaction of unloading waves with each other and with the faces causes the deformation of the sample due to the formation of standing waves, at the nodes of which the localized- deformation bands arise (if the high-speed tension does not exceed the spall strength, so the material in the zone of interference of unloading waves preserves its continuity). A consequence of deformation localization is the mass transfer of atoms and the doping phase particles to nascent localized-deformation bands. The duration of stress oscillations in standing waves in the ultrasonic frequency range exceeds the duration of the initial impulse by at least two orders of magnitude, which ensures an increase in the distance traveled by atoms and dispersed particles during deformation in standing waves.

Keywords

shock wave impulse loading localization deformation abnormal mass transfer reverberation of waves standing wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. R. Andrade, M. A. Meyers, K. S. Vecchio, and A. H. Chokshi, Acta Metall. Mater. 42, 3183 (1994).CrossRefGoogle Scholar
  2. 2.
    J. A. Hines and K. S. Vecchio, Acta Mater. 45, 635 (1997).CrossRefGoogle Scholar
  3. 3.
    M. A. Meyers, Y. B. Xu, Q. Xue, et al., Acta Mater. 51, 1307 (2003).CrossRefGoogle Scholar
  4. 4.
    A. F. Belikova, S. N. Buravova, E. V. Petrov, N. V. Sachkova, and A. S. Shchukin, Russ. J. Phys. Chem. B 10, 444 (2016).CrossRefGoogle Scholar
  5. 5.
    B. Hwang, S. Lee, Y. C. Kim, et al., Mater. Sci. Eng. A 441, 308 (2006).CrossRefGoogle Scholar
  6. 6.
    S. N. Buravova, E. V. Petrov, and M. I. Alymov, Dokl. Phys. 61, 309 (2016).CrossRefGoogle Scholar
  7. 7.
    L. N. Larikov, V. M. Fal’chenko, V. F. Mazanko, et al., Sov. Phys. Dokl. 20, 287 (1975).Google Scholar
  8. 8.
    Yu. L. Krasulin, Fiz. Khim. Obrab. Mater., No. 4, 133 (1981).Google Scholar
  9. 9.
    E. G. Avvakumov, Mechanical Methods of Activating Chemical Processes (Nauka, Novosibirsk, 1986), p. 306 [in Russian].Google Scholar
  10. 10.
    L. N. Larikov, V. M. Fal’chenko, V. F. Mazanko, et al., Avtom. Svarka, No. 5, 19 (1974).Google Scholar
  11. 11.
    D. S. Gertsriken, V. F. Mazanko, and V. M. Fal’chenko, Metallofizika (Kiev) 5 (4), 74 (1983).Google Scholar
  12. 12.
    L. N. Larikov, M. N. Belyakova, G. K. Kharchenko, et al., Fiz. Khim. Obrab. Mater., No. 6, 104 (1978).Google Scholar
  13. 13.
    D. S. Gertsriken, A. I. Ignatenko, V. F. Mazanko, O. A. Mironova, Yu. V. Fal’chenko, and G. K. Kharchenko, Phys. Met. Metallogr. 99, 187 (2005).Google Scholar
  14. 14.
    M. N. Belyakova, L. N. Larikov, and E. A. Maksimenko, Metallofizika 3 (4), 130 (1981).Google Scholar
  15. 15.
    Yu. Ya. Meshkov, D. S. Gertsriken, and V. F. Mazanko, Metallofiz. Noveishie Tekhnol. 18 (4), 32 (1996).Google Scholar
  16. 16.
    A. G. Evans and T. R. Wilshaw, J. Mater. Sci. 12, 97 (1977).CrossRefGoogle Scholar
  17. 17.
    S. P. Timothy and I. M. Hutchings, Acta Metall. 33, 667 (1985).CrossRefGoogle Scholar
  18. 18.
    L. E. Murr and E. V. Esquivel, J. Mater. Sci. 39, 1153 (2004).CrossRefGoogle Scholar
  19. 19.
    J. F. C. Lins, H. R. Z. Sandim, H.-J. Kestenbach, et al., Mater. Sci.Eng. A 457, 205 (2007).CrossRefGoogle Scholar
  20. 20.
    S. N. Buravova, E. V. Petrov, and A. S. Shchukin, Combust. Explos., Shock Waves 52, 613 (2016).CrossRefGoogle Scholar
  21. 21.
    A. F. Belikova, S. N. Buravova, and Yu. A. Gordopolov, Tech. Phys. 58, 302 (2013).CrossRefGoogle Scholar
  22. 22.
    S. Buravova, Studies on Localization of Dynamic Deformation (Palmarium Academic, Saarbrücken, 2014), p. 140.Google Scholar
  23. 23.
    G. I. Kanel’, S. V. Razorenov, F. I. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996), p. 408 [in Russian].Google Scholar
  24. 24.
    B. A. Kolachev, V. A. Livanov, and B. I. Elagin, Metal Science and Thermal Processing of Non-Ferrous Metals and Alloys (Metallurgiya, Moscow, 1972), p. 480 [in Russian].Google Scholar
  25. 25.
    A. R. Kuznetsov and V. V. Sagaradze, Phys. Met. Metallogr. 93, 404 (2002).Google Scholar
  26. 26.
    G. S. Gorelik, Oscillations and Waves. Introduction to Acoustics, Radiophysics, and Optics (Fizmatlit, Moscow, 1959), p. 572 [in Russian].Google Scholar
  27. 27.
    G. V. Stepanov, Elastic-Plastic Deformation of Materials under the Action of Impulse loading (Naukova Dumka, Kiev, 1979), p. 268 [in Russian].Google Scholar
  28. 28.
    A. A. Grib, A. G. Ryabinin, and S. A. Khristianovich, Prikl. Mat. Mekh. 20, 532 (1956).Google Scholar
  29. 29.
    S. N. Buravova, A. A. Goncharov, and Yu. N. Kiselev, Tribol. Int. 29, 357 (1996).CrossRefGoogle Scholar
  30. 30.
    B. L. Glushak, V. F. Kuropatenko, and S. A. Novikov, Investigation of Material Strength under Dynamic Loading (Nauka, Novosibirsk, 1992), p. 294 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations