Advertisement

Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 165–171 | Cite as

Dependence of the Dipole Moment of Functionalized Carbon Nanotubes of Chair Type on Their Length

  • A. A. Belolipetskii
  • N. G. Lebedev
Chemical Physics of Nanomaterials
  • 11 Downloads

Abstract

The dependence of the electronic energy characteristics of single-walled carbon nanotubes of the chair type (3, 3) and (4, 4) functionalized by the boundary hydrogen and fluorine atoms on the tube length was studied by the semiempirical MNDO quantum-chemical method within the framework of the molecular cluster model. The results of calculations showed a tendency toward saturation of the charges of the boundary atoms at a length of 20 unit cells along the tube axis. The dipole moment of the functionalized carbon nanotubes reached saturation at a length of 40 unit cells along the axis. The dipole moment of saturation increased with the tube diameter. This effect is manifested for various one-dimensional structures.

Keywords

MNDO method molecular cluster model boundary atoms saturation effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. D’yachkov, Electron Properties and Application of Carbon Nanotubes (BINOM, Laboratoriya Znanii, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artyukh, Russ. Chem. Rev. 83, 251 (2014).CrossRefGoogle Scholar
  3. 3.
    M. V. Vostrikov, in Proc. of the 9th Youth Conference Technology and Systems-2007, Moscow, Apr. 18–19, 2007 (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2007), p. 223.Google Scholar
  4. 4.
    Liu Chang, Foundations of MEMS (Pearson Education, New York, 2012).Google Scholar
  5. 5.
    Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, J. Exp. Theor. Phys. 103, 449 (2006).CrossRefGoogle Scholar
  6. 6.
    Yu. E. Lozovik and A. M. Popov, Phys. Usp. 50, 749 (2007).CrossRefGoogle Scholar
  7. 7.
    O. V. Ershova, I. V. Lebedeva, Yu. E. Lozovik, A.M. Popov, O. N. Bubel’, N. A. Poklonskii, and E. F. Kislyakov, Phys. Solid State 49, 2010 (2007).CrossRefGoogle Scholar
  8. 8.
    O. V. Ershova, I. V. Lebedeva, Yu. E. Lozovik, et al., Phys. Rev. B 81, 155453 (2010).CrossRefGoogle Scholar
  9. 9.
    N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mir, Moscow, 2001) [in Russian].Google Scholar
  10. 10.
    A. L. Montero-Alejo, M. E. Fuentes, E. Menéndez-Proupin, et al., Phys. Rev. B 81, 235409 (2010).CrossRefGoogle Scholar
  11. 11.
    W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001).CrossRefGoogle Scholar
  12. 12.
    M. Otani, S. Okada, and Y. Okamoto, Phys. Rev. B 80, 153413 (2009).CrossRefGoogle Scholar
  13. 13.
    N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Fullerenes, Nanotubes Carbon Nanostruct. 12, 443 (2004).CrossRefGoogle Scholar
  14. 14.
    N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Int. J. Quantum Chem. 100, 548 (2004).CrossRefGoogle Scholar
  15. 15.
    E. N. Shamina and N. G. Lebedev, Nauch.-Tekh. Vedom. SPbGPU, Ser.: Fiz.-Mat. Nauki, No. 2, 99 (2009).Google Scholar
  16. 16.
    E. N. Shamina and N. G. Lebedev, Russ. J. Phys. Chem. B 6, 448 (2012).CrossRefGoogle Scholar
  17. 17.
    E. N. Shamina and N. G. Lebedev, Vestn. Volgogr. Univ., Ser. 1: Fiz. Mat., No. 1, 90 (2013).Google Scholar
  18. 18.
    E. N. Shamina and N. G. Lebedev, Russ. J. Phys. Chem. A 89, 823 (2015).CrossRefGoogle Scholar
  19. 19.
    I. V. Zaporotskova, A. O. Litinskii, and L. A. Chernozatonskii, Volgogr. Univ., Ser. 1: Fiz. Mat., No. 2, 96 (1997).Google Scholar
  20. 20.
    I. V. Zaporotskova, A. O. Litinskii, and L. A. Chernozatonskii, JETP Lett. 66, 841 (1997).CrossRefGoogle Scholar
  21. 21.
    P. N. D’yachkov, Russ. J. Inorg. Chem. 46, 92 (2001).Google Scholar
  22. 22.
    N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Microelectron. Eng. 69, 511 (2003).CrossRefGoogle Scholar
  23. 23.
    I. V. Zaporotskova, N. G. Lebedev, and L. A. Chernozatonskii, Int. J. Quantum Chem. 96, 149 (2004).CrossRefGoogle Scholar
  24. 24.
    N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Int. J. Quantum Chem. 96, 142 (2004).CrossRefGoogle Scholar
  25. 25.
    I. V. Zaporotskova, N. G. Lebedev, and L. A. Chernozatonskii, Phys. Solid State 46, 1173 (2004).CrossRefGoogle Scholar
  26. 26.
    O. B. Tomilin, I. V. Stankevich, E. E. Muryumin, S. A. Lesin, and N. P. Syrkina, Phys. Solid State 53, 201 (2011).CrossRefGoogle Scholar
  27. 27.
    O. B. Tomilin, E. E. Muryumin, and E. V. Rodionova, Phys. Solid State 55, 2397 (2013).CrossRefGoogle Scholar
  28. 28.
    A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 2nd All-Russia Conference on Nanotechnologies and Nanomaterials: Modern State and Development Perspectives in the Conditions of Volgograd Region (Volgograd, 2009), p. 82.Google Scholar
  29. 29.
    A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 10th Anniversary All-Russia Youth School-Seminar on Problems of Condensed Matter State Physics (IFM UrO RAN, Ekaterinburg, 2009), p. 227.Google Scholar
  30. 30.
    A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 9th Biennial International Workshop on Fullerenes and Atomic Clusters (St. Petersburg, 2009), p. 46.Google Scholar
  31. 31.
    A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 51st Conference of Mosc. Phys. Tech. Inst. on Modern Problems of Fundamental and Applied Sciences (Moscow, 2008), p. 187.Google Scholar
  32. 32.
    J. J. P. Stewart, J. Comput. Chem. 10, 221 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Volgograd State UniversityVolgogradRussia

Personalised recommendations