Skip to main content
Log in

Dependence of the Dipole Moment of Functionalized Carbon Nanotubes of Chair Type on Their Length

  • Chemical Physics of Nanomaterials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The dependence of the electronic energy characteristics of single-walled carbon nanotubes of the chair type (3, 3) and (4, 4) functionalized by the boundary hydrogen and fluorine atoms on the tube length was studied by the semiempirical MNDO quantum-chemical method within the framework of the molecular cluster model. The results of calculations showed a tendency toward saturation of the charges of the boundary atoms at a length of 20 unit cells along the tube axis. The dipole moment of the functionalized carbon nanotubes reached saturation at a length of 40 unit cells along the axis. The dipole moment of saturation increased with the tube diameter. This effect is manifested for various one-dimensional structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. N. D’yachkov, Electron Properties and Application of Carbon Nanotubes (BINOM, Laboratoriya Znanii, Moscow, 2011) [in Russian].

    Google Scholar 

  2. L. A. Chernozatonskii, P. B. Sorokin, and A. A. Artyukh, Russ. Chem. Rev. 83, 251 (2014).

    Article  Google Scholar 

  3. M. V. Vostrikov, in Proc. of the 9th Youth Conference Technology and Systems-2007, Moscow, Apr. 18–19, 2007 (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2007), p. 223.

    Google Scholar 

  4. Liu Chang, Foundations of MEMS (Pearson Education, New York, 2012).

    Google Scholar 

  5. Yu. E. Lozovik, A. G. Nikolaev, and A. M. Popov, J. Exp. Theor. Phys. 103, 449 (2006).

    Article  CAS  Google Scholar 

  6. Yu. E. Lozovik and A. M. Popov, Phys. Usp. 50, 749 (2007).

    Article  CAS  Google Scholar 

  7. O. V. Ershova, I. V. Lebedeva, Yu. E. Lozovik, A.M. Popov, O. N. Bubel’, N. A. Poklonskii, and E. F. Kislyakov, Phys. Solid State 49, 2010 (2007).

    Article  CAS  Google Scholar 

  8. O. V. Ershova, I. V. Lebedeva, Yu. E. Lozovik, et al., Phys. Rev. B 81, 155453 (2010).

    Article  Google Scholar 

  9. N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  10. A. L. Montero-Alejo, M. E. Fuentes, E. Menéndez-Proupin, et al., Phys. Rev. B 81, 235409 (2010).

    Article  Google Scholar 

  11. W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001).

    Book  Google Scholar 

  12. M. Otani, S. Okada, and Y. Okamoto, Phys. Rev. B 80, 153413 (2009).

    Article  Google Scholar 

  13. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Fullerenes, Nanotubes Carbon Nanostruct. 12, 443 (2004).

    Article  CAS  Google Scholar 

  14. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Int. J. Quantum Chem. 100, 548 (2004).

    Article  CAS  Google Scholar 

  15. E. N. Shamina and N. G. Lebedev, Nauch.-Tekh. Vedom. SPbGPU, Ser.: Fiz.-Mat. Nauki, No. 2, 99 (2009).

    Google Scholar 

  16. E. N. Shamina and N. G. Lebedev, Russ. J. Phys. Chem. B 6, 448 (2012).

    Article  CAS  Google Scholar 

  17. E. N. Shamina and N. G. Lebedev, Vestn. Volgogr. Univ., Ser. 1: Fiz. Mat., No. 1, 90 (2013).

    Google Scholar 

  18. E. N. Shamina and N. G. Lebedev, Russ. J. Phys. Chem. A 89, 823 (2015).

    Article  CAS  Google Scholar 

  19. I. V. Zaporotskova, A. O. Litinskii, and L. A. Chernozatonskii, Volgogr. Univ., Ser. 1: Fiz. Mat., No. 2, 96 (1997).

    Google Scholar 

  20. I. V. Zaporotskova, A. O. Litinskii, and L. A. Chernozatonskii, JETP Lett. 66, 841 (1997).

    Article  Google Scholar 

  21. P. N. D’yachkov, Russ. J. Inorg. Chem. 46, 92 (2001).

    Google Scholar 

  22. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Microelectron. Eng. 69, 511 (2003).

    Article  CAS  Google Scholar 

  23. I. V. Zaporotskova, N. G. Lebedev, and L. A. Chernozatonskii, Int. J. Quantum Chem. 96, 149 (2004).

    Article  CAS  Google Scholar 

  24. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskii, Int. J. Quantum Chem. 96, 142 (2004).

    Article  CAS  Google Scholar 

  25. I. V. Zaporotskova, N. G. Lebedev, and L. A. Chernozatonskii, Phys. Solid State 46, 1173 (2004).

    Article  CAS  Google Scholar 

  26. O. B. Tomilin, I. V. Stankevich, E. E. Muryumin, S. A. Lesin, and N. P. Syrkina, Phys. Solid State 53, 201 (2011).

    Article  CAS  Google Scholar 

  27. O. B. Tomilin, E. E. Muryumin, and E. V. Rodionova, Phys. Solid State 55, 2397 (2013).

    Article  CAS  Google Scholar 

  28. A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 2nd All-Russia Conference on Nanotechnologies and Nanomaterials: Modern State and Development Perspectives in the Conditions of Volgograd Region (Volgograd, 2009), p. 82.

    Google Scholar 

  29. A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 10th Anniversary All-Russia Youth School-Seminar on Problems of Condensed Matter State Physics (IFM UrO RAN, Ekaterinburg, 2009), p. 227.

    Google Scholar 

  30. A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 9th Biennial International Workshop on Fullerenes and Atomic Clusters (St. Petersburg, 2009), p. 46.

    Google Scholar 

  31. A. A. Belolipetskii and N. G. Lebedev, in Proc. of the 51st Conference of Mosc. Phys. Tech. Inst. on Modern Problems of Fundamental and Applied Sciences (Moscow, 2008), p. 187.

    Google Scholar 

  32. J. J. P. Stewart, J. Comput. Chem. 10, 221 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belolipetskii.

Additional information

Original Russian Text © A.A. Belolipetskii, N.G. Lebedev, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 2, pp. 81–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belolipetskii, A.A., Lebedev, N.G. Dependence of the Dipole Moment of Functionalized Carbon Nanotubes of Chair Type on Their Length. Russ. J. Phys. Chem. B 12, 165–171 (2018). https://doi.org/10.1134/S1990793118010141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118010141

Keywords

Navigation