Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 77–82 | Cite as

Burning Velocity and Sample Length Change for the 5Ti + 3Si System. Effects of Mechanoactivation, Thermoevacuation Treatment, and Ambient Atmosphere Pressure

  • N. A. Kochetov
  • I. A. Studenikin
Combustion, Explosion, and Shock Waves


The effects of the ambient atmospheric pressure, thermoevacuation treatment, and mechanoactivation on the combustion of the 5Ti + 3Si system is studied. It is demonstrated that the burning velocity and elongation of the samples during combustion do not depend on the argon pressure in the case of the 5Ti + 3Si system, which is fundamentally different from the behavior of the previously studied Ni + Al and Ti + 0.5C systems. After thermoevacuation of the initial mixture, its burning velocity increases significantly (twofold), whereas the increase in the sample length during combustion reverses to contraction. This result can be used to optimize the production of composite targets for the deposition of multifunctional coatings by means of the forced compaction technology in self-propagating high-temperature synthesis, in particular, to obtain a better homogeneity of the products under quasi-static compression conditions.


self-propagating high-temperature synthesis burning velocity ambient atmospheric pressure thermoevacuation mechanoactivation titanium silicide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Levashov, Yu. S. Pogozhev, A. S. Rogachev, et al., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funktsion. Pokryt., No. 3, 26 (2010).Google Scholar
  2. 2.
    A. S. Rogachev, F. Baras, and S. A. Rogachev, Dokl. Phys. 53, 517 (2008).CrossRefGoogle Scholar
  3. 3.
    S. G. Vadchenko, A. Yu. Gordopolov, and A. S. Mukas’yan, Dokl. Phys. 42, 288 (1997).Google Scholar
  4. 4.
    Yu. S. Naiborodenko, N. G. Kasatskii, G. V. Lavrenchuk, et al., in Proceedings of the 6th All-Union Symposium on Combustion and Explosion (OIKhF AN SSSR, Chernogolovka, 1980), p. 74.Google Scholar
  5. 5.
    B. S. Seplyarskii, G. B. Brauer, and S. V. Kostin, Int. J. Self-Propag. High-Temp. Synth. 17, 199 (2008). doi 10.3103/S1061386208030072CrossRefGoogle Scholar
  6. 6.
    S. G. Vadchenko, Fiz. Goreniya Vzryva 38, 55 (2002).Google Scholar
  7. 7.
    N. A. Kochetov, A. S. Rogachev, A. N. Emel’yanov, et al., Fiz. Goreniya Vzryva 40 (5), 74 (2004).Google Scholar
  8. 8.
    S. G. Vadchenko, Int. J. Self-Propag. High-Temp. Synth. 24, 90 (2015). doi 10.3103/S1061386215020107Google Scholar
  9. 9.
    E. N. Eremina, V. V. Kurbatkina, E. A. Levashov, et al., Khim. Inter. Ustoich. Razvit. 13, 197 (2005).Google Scholar
  10. 10.
    A. Yu. Potanin, P. A. Loginov, E. A. Levashov, et al., Euras. Chem.-Technol. J. 17, 233 (2015).CrossRefGoogle Scholar
  11. 11.
    N. A. Kochetov and B. S. Seplyarskii, Russ. J. Phys. Chem. B 11, 288 (2017).CrossRefGoogle Scholar
  12. 12.
    N. A. Kochetov, N. A. Khomenko, B. S. Seplyarskii, et al., Int. J. Self-Propag. High-Temp. Synth. 25, 177 (2016). doi 10.3103/S1061386216030043CrossRefGoogle Scholar
  13. 13.
    B. S. Seplyarskii, Dokl. Phys. Chem. 396, 130 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations