Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 179–184 | Cite as

Air Plasma Parameters in Normal and Seismic Conditions

  • N. V. Ardelyan
  • V. L. Bychkov
  • G. V. Golubkov
  • K. V. Kosmachevskii
Chemical Physics of Atmospheric Phenomena


Plasma-chemical processes in air are studied. Based on numerical simulations, the background concentrations of the main charged species are determined under normal conditions and at increased rates of formation of fast particle due to seismic activity. An analysis of the composition of air plasma is carried out at various humidities.


ionization in the atmosphere air ionization ionization in seismic conditions air humidity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. Mazur and O. P. Ivanov, Dangerous Natural Processes (Ekonomika, Moscow, 2004) [in Russian].Google Scholar
  2. 2.
    S. A. Pulinets, V. V. Khegai, K. A. Boyarchuk, and A. M. Lomonosov, Phys. Usp. 41, 515 (1998).CrossRefGoogle Scholar
  3. 3.
    R. Reiter, Phenomena in Atmospheric and Environmental Electricity (Elsevier, Amsterdam, London, New York, 1992).Google Scholar
  4. 4.
    A. I. Grigor’ev, N. I. Gershenzon, and N. G. Gokhberg, Dokl. Akad. Nauk 300, 1087 (1988).Google Scholar
  5. 5.
    Y.-S. Zou, Phys. Scr. 52, 726 (1995).CrossRefGoogle Scholar
  6. 6.
    Y. Enomoto and T. Hashimoto, Nature 346, 641 (1990).CrossRefGoogle Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuos Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  8. 8.
    N. V. Ardelyan, V. L. Bychkov, K. V. Kosmachevskii, and D. S. Maksimov, Usp. Prikl. Fiz. 3, 553 (2015).Google Scholar
  9. 9.
    N. V. Ardelyan, V. L. Bychkov, K. V. Kosmachevskii, and I. V. Kochetov, IEEE Trans. Plasma Sci. 41, 3240 (2013).CrossRefGoogle Scholar
  10. 10.
    N. V. Ardelyan, V. L. Bychkov, D. V. Bychkov, and K. V. Kosmachevskii, in Plasma Assisted Combustion, Gasification and Pollution Control, Ed. by I. B. Matveev (Outskirt, Denver, 2013), Chap. 3.Google Scholar
  11. 11.
    N. V. Ardelyan, V. L. Bychkov, K. V. Kosmachevskii, et al., in Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, FL, 2009, Paper AIAA-2009-0693.Google Scholar
  12. 12.
    A. Y. Kostinsky, A. A. Matveev, V. P. Silakov, et al., Plasma Sources. Sci. Technol. 1, 207 (1992).CrossRefGoogle Scholar
  13. 13.
    N. L. Aleksandrov, F. I. Vysikailo, R. Sh. Islamov, et al., Teplofiz. Vys. Temp. 19, 485 (1981).Google Scholar
  14. 14.
    A. Kh. Mnatsakanyan and G. V. Naidis, in Plasma Chemistry, Ed. by B. M. Smirnov (Energoatomizdat, 1987), Vol. 14, p. 227 [in Russian].Google Scholar
  15. 15.
    A. A. Ponomarev and N. L. Aleksandrov, Plasma Sources Sci. Technol. 24, 03501 (2015).CrossRefGoogle Scholar
  16. 16.
    V. P. Konovalov, J. Tech. Phys. 63, 23 (1993).Google Scholar
  17. 17.
    V. P. Konovalov and E. E. Son, in Plasma Chemistry, Ed. by B. M. Smirnov (Energoatomizdat, 1987), Vol. 14, p. 194 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Ardelyan
    • 1
  • V. L. Bychkov
    • 1
    • 2
  • G. V. Golubkov
    • 3
  • K. V. Kosmachevskii
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Moscow Radiotechical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations