Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 8, pp 1255–1259 | Cite as

Synthesis of Phenanthrene Alkaloids from Herbal Aporphine Alkaloids in Subcritical Water Using Synthesis of Seco-Glaucine as an Example

  • E. V. Vetrova
  • S. V. Kurbatov
  • S. N. Borisenko
  • A. V. Lekar
  • S. S. Khizrieva
  • N. I. BorisenkoEmail author
  • V. I. Minkin
Article
  • 37 Downloads

Abstract

Transformation of the model aporphine alkaloid glaucine into the phenanthrene alkaloid secoglaucine (seco-GL) in subcritical water at 100–250°C without catalytic additives is studied. The maximum yield of seco-glaucine is achieved at 250°C. It is shown that under these conditions the load of the initial compound affects only slightly the yield of the target compound, which is on average 80%. The increase of the GL load up to 400 mg results in precipitation of the target seco-GL directly from the reaction mixture. The suggested method avoids the use of costly and toxic organic solvents.

Keywords

subcritical water aporphine alkaloids glaucine phenanthrene alkaloids seco-glaucine high-performance liquid chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Stévigny, C. Bailly, and J. Quetin-Leclercq, Curr. Med. Chem. Anti-Cancer Agent 5, 173 (2005).CrossRefGoogle Scholar
  2. 2.
    Q. Zhao, Y. Zhao, and K. Wang, J. Ethnopharmacol. 106, 408 (2006).CrossRefGoogle Scholar
  3. 3.
    V. B. Konkimalla and T. Efferth, Biochem. Pharmacol. 79, 1092 (2010).CrossRefGoogle Scholar
  4. 4.
    P. D. Ray, B. W. Huang, and Y. Tsuji, Cell. Signal. 24, 981 (2012).CrossRefGoogle Scholar
  5. 5.
    J. M. Matés, J. A. Segura, F. J. Alonso, and J. Márquez, Arch. Toxicol. 86, 1649 (2012).CrossRefGoogle Scholar
  6. 6.
    P. O’Brien, C. Carrasco-Pozo, and H. Speisky, Chem. Biol. Interact. 159, 1 (2006).CrossRefGoogle Scholar
  7. 7.
    J. C. Estbvez, M. C. Villaverdre, R. J. Estbvez, J. A. Seijas, and L. Castedo, Can. J. Chem. 68, 964 (1990).CrossRefGoogle Scholar
  8. 8.
    A. A. Galkin and V. V. Lunin, Russ. Chem. Rev. 74, 21 (2005).CrossRefGoogle Scholar
  9. 9.
    S. N. Borisenko, A. V. Bicherov, O. V. Pavlyk, M. I. Rudnev, N. I. Borisenko, E. V. Vetrova, V. I. Minkin, R. N. Borisenko, and A. V. Lekar, Russ. J. Phys. Chem. B 3, 1131 (2009).CrossRefGoogle Scholar
  10. 10.
    A. R. Katritzky, D. A. Nichols, M. Siskin, R. Murugan, and M. Balasubramanian, Chem. Rev. 101, 837 (2001).CrossRefGoogle Scholar
  11. 11.
    A. V. Lekar, O. V. Filonova, S. N. Borisenko, E. V. Maksimenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Russ. J. Phys. Chem. B 7, 829 (2013).CrossRefGoogle Scholar
  12. 12.
    A. V. Lekar, S. N. Borisenko, E. V. Vetrova, O. V. Filonova, E. V. Maksimenko, N. I. Borisenko, and V. I. Minkin, Nat. Product Commun. 10, 1801 (2015).Google Scholar
  13. 13.
    Y. Hayashi, Chem. Sci. 7, 866 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Vetrova
    • 1
  • S. V. Kurbatov
    • 1
  • S. N. Borisenko
    • 1
  • A. V. Lekar
    • 1
  • S. S. Khizrieva
    • 1
  • N. I. Borisenko
    • 1
    Email author
  • V. I. Minkin
    • 1
  1. 1.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations