Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 8, pp 1288–1295 | Cite as

Etching of Sapphire in Supercritical Water at Ultrahigh Temperatures and Pressures under the Conditions of Pulsed Laser Thermoplasmonics

  • M. Yu. TsvetkovEmail author
  • N. V. Minaev
  • A. A. Akovantseva
  • G. I. Pudovkina
  • P. S. Timashev
  • S. I. Tsypina
  • V. I. Yusupov
  • A. E. Muslimov
  • A. V. Butashin
  • V. M. Kanevsky
  • V. N. Bagratashvili
Article
  • 26 Downloads

Abstract

The method of thermoplasmonic laser-induced backside wet etching (TPLIBWE) is applied for effective and well-controlled microstructuring of sapphire. The method is based on the generation of highly absorbing silver nanoparticles in the course of the pulsed-periodic laser irradiation. The silver nanoparticles are formed as a result of the reduction of a water-dissolved precursor, AgNO3. The process of sapphire etching occurs via the formation of supercritical water at ultrahigh temperatures and pressures (which significantly exceed the critical values for water) and the formation of silver nanoparticles at the sapphire/water interface as a result of the absorption of laser radiation. The mechanism of TPLIBWE is considered and the etching rate, which reaches ~100 nm/pulse, is determined. The formation of aluminum nanoparticles, which indicates a deep destruction of Al2O3 as a result of TPLIBWE, is observed.

Keywords

sapphire laser backside wet etching microstructuring thermoplasmonic supercritical water ultrahigh pressures and temperatures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. R. Dobrovinskaya, L. A. Lytvynov, and V. V. Pishchik, Sapphire. Material Manufacturing, Applications. (Springer, New York, 2009).Google Scholar
  2. 2.
    Sapphire: Structure, Technology, and Application, Ed. by I. Tartaglia (Nova Science, New York, 2013).Google Scholar
  3. 3.
    L. Kuna, A. Haase, F. Reil, C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, IEEE J. Sel. Top. Quantum Electron. 15, 1250 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, Y. Inoue, M. Hazumi, J. Koch, O. Suttman, and V. Schütz, Appl. Opt. 55, 3502 (2016).CrossRefGoogle Scholar
  5. 5.
    T. B. Teplova and A. S. Samerkhanova, Gorn. Inform.-Anal. Byull., No. 10, 338 (2006).Google Scholar
  6. 6.
    M. Hörstmann-Jungemann, J. Gottman, and M. Keggenhoff, J. Laser Micro/Nanoeng. 5, 145 (2010).CrossRefGoogle Scholar
  7. 7.
    Q. Li, Y. Yu, L. Wang, X. Cao, X. Liu, Y. Sun, Q. Chen, J. Duan, and H. Sun, IEEE Photon. Technol. Lett. 28, 1290 (2016).CrossRefGoogle Scholar
  8. 8.
    M. Liu, Y. Hu, X. Sun, C. Wang, J. Zhou, X. Dong, K. Yin, D. Chu, and J. Duan, Appl. Phys. A 123, 99 (2017).CrossRefGoogle Scholar
  9. 9.
    K. Zimmer, M. Ehrhardt, and R. Böhme, in Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials, Ed. by G. Yang (Pan Stanford, Singapore, 2012).Google Scholar
  10. 10.
    H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, Y. Kawaguchi, and A. Yabe, J. Photochem. Photobiol. A: Chem. 158, 179 (2003).CrossRefGoogle Scholar
  11. 11.
    C. Vass, J. Budai, Z. Schay, and B. Hopp, J. Laser Micro/Nanoeng. 5, 43 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Zimmer, R. Böhme, M. Ehrhardt, and B. Rauschenbach, Appl. Phys. A 101, 405 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Yu. Tsvetkov, V. I. Yusupov, N. V. Minaev, A. A. Akovantseva, P. S. Timashev, K. M. Golant, B. N. Chichkov, and V. N. Bagratashvili, Opt. Laser Technol. 88, 17 (2017).CrossRefGoogle Scholar
  14. 14.
    M. Yu. Tsvetkov, V. I. Yusupov, P. S. Timashev, K. M. Golant, N. V. Minaev, S. I. Tsypina, and V. N. Bagratashvili, Sverkhkrit. Fluidy Teor. Prakt. 11 (2), 14 (2016).Google Scholar
  15. 15.
    M. Yu. Tsvetkov, V. I. Yusupov, N. V. Minaev, P. S. Timashev, K. M. Golant, and V. N. Bagratashvili, Laser Phys. Lett. 13, 106001 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Yu. Tsvetkov, V. I. Yusupov, and P. S. Timashev, K. M. Golant, N. V. Minaev, and V. N. Bagratashvili, Nanotechnol. Russ. 12, 86 (2017).CrossRefGoogle Scholar
  17. 17.
    Yu. E. Gorbatyi, Sverkhkrit. Fluidy Teor. Prakt. 2 (1), 40 (2007) [in Russian].Google Scholar
  18. 18.
    S. I. Dolgaev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, Quantum Electron. 26, 65 (1996).CrossRefGoogle Scholar
  19. 19.
    A. O. Govorov and H. H. Richardson, Nanotoday 2, 30 (2007).CrossRefGoogle Scholar
  20. 20.
    G. Baffou and R. Quidant, Laser Photon. Rev. 7, 171 (2013).CrossRefGoogle Scholar
  21. 21.
    V. E. Asadchikov, A. V. Butashin, V. M. Kanevsky, A. E. Muslimov, and B. S. Roshchin, in Sapphire: Structure, Technology, and Application, Ed. by I. Tartaglia (Nova Science, New York, 2013), p. 35.Google Scholar
  22. 22.
    A. E. Siegman, Lasers (Univ. Science Books, Mill Valley, CA, 1986).Google Scholar
  23. 23.
    M. Sakamoto, M. Fujistuka, and T. Majima, J. Photochem. Photobiol. C: Photochem. Rev. 10, 33 (2009).CrossRefGoogle Scholar
  24. 24.
    H. Varel, M. Wahmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, Appl. Surf. Sci. 127–129, 128 (1998).CrossRefGoogle Scholar
  25. 25.
    G. L. Homyak, K. L. N. Pbani, D. L. Kunkel, V. P. Menon, and C. R. Martin, Nanostruct. Mater. 6, 839 (1995).CrossRefGoogle Scholar
  26. 26.
    E. K. Kazenas and Yu. V. Tsvetkov, Oxide Evaporation (Nauka, Moscow, 1997) [in Russian].Google Scholar
  27. 27.
    N. G. Khlebtsov and L. A. Dykman, J. Quant. Spectrosc. Rad. Transfer 111, 1 (2010).CrossRefGoogle Scholar
  28. 28.
    E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, Opt. Express 17, 12650 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Yu. Olenin and G. V. Lisichkin, Russ. Chem. Rev. 80, 605 (2011).CrossRefGoogle Scholar
  30. 30.
    U. Kreibig, M. Gartz, A. Hilger, H. Hövel, M. Quinten, D. Wagner, and H. Ditlbacher, in Functional Properties of Nanostructured Materials, Ed. by R. Kassing et al. (Springer, 2005).Google Scholar
  31. 31.
    M. Yu. Tsvetkov, V. N. Bagratashvili, V. Ya. Panchenko, A. O. Rybaltovskii, M. I. Samoilovich, and M. A. Timofeev, Nanotechnol. Russ. 6, 619 (2011).CrossRefGoogle Scholar
  32. 32.
    Z. Yan and D. B. Chrisey, J. Photochem. Photobiol. C: Photochem. Rev. 13, 204 (2012).CrossRefGoogle Scholar
  33. 33.
    V. Amendola and M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013).CrossRefGoogle Scholar
  34. 34.
    L. Zhdan, V. Kovalenko, N. Strelenko, and Y. Chvertko, Soldag. Insp. Sao Paulo 18, 314 (2013).CrossRefGoogle Scholar
  35. 35.
    E. D. Palik, Handbook of Optical Constants of Solids II (Academic, New York, 1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. Yu. Tsvetkov
    • 1
    Email author
  • N. V. Minaev
    • 1
  • A. A. Akovantseva
    • 1
  • G. I. Pudovkina
    • 1
  • P. S. Timashev
    • 1
  • S. I. Tsypina
    • 1
  • V. I. Yusupov
    • 1
  • A. E. Muslimov
    • 2
  • A. V. Butashin
    • 2
  • V. M. Kanevsky
    • 2
  • V. N. Bagratashvili
    • 1
    • 3
  1. 1.Institute of Photonic Technologies, Crystallography and Photonics Federal Scientific Research CenterRussian Academy of SciencesTroitsk (Moscow)Russia
  2. 2.Institute of Crystallography, Crystallography and Photonics Federal Scientific Research CentreRussian Academy of SciencesMoscowRussia
  3. 3.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations