Russian Journal of Physical Chemistry B

, Volume 11, Issue 8, pp 1283–1287 | Cite as

Purification of Xenogeneic Bone Matrix by Extraction with Supercritical Carbon Dioxide and Evaluation of the Obtained Material

  • D. V. SmolentsevEmail author
  • M. V. Gurin
  • A. A. Venediktov
  • S. V. Evdokimov
  • R. A. Fadeev


An environmentally friendly method of osteoplastic material production is proposed for reconstructive surgery needs based on treatment of xenogeneic bone matrix with supercritical carbon dioxide. The method provides the best extraction of lipids and fatlike substances at minimum cost of extracting agent and processing time; it allows the significant reduction of costs and facilitates the manufacture of surgical implants. The advantages of the obtained material in comparison with the known commercial analogue are demonstrated by in vitro experiments on the cellular model.


osteoplastic matrix bone block supercritical carbon dioxide delipidization bone implants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. N. Berchenko, in Proceedings of the Seminar on Application of Artificial Implant 'Kollapan' in Travmatology and Orthopedy (Moscow, 2008), p. 3.Google Scholar
  2. 2.
    I. A. Kirilova, M. A. Sadovoi, and V. T. Podorozhnaya, Khirurg. Pozvonochn., No. 3, 72 (2012).Google Scholar
  3. 3.
    A. A. Bulatov, A. V. Kalinin, and V. I. Savel’ev, Travmatol. Ortoped. Ross., No. 1, 55 (2005).Google Scholar
  4. 4.
    Technical Fat Extraction by Chemical Solvents. html.Google Scholar
  5. 5.
    GOST (State Standard) No. 23042-86. Scholar
  6. 6.
    M. Barbeck, S. Udeabor, J. Lorenz, M. Schlee, et al., J. Oral Implantol. 41, 212 (2015).CrossRefGoogle Scholar
  7. 7.
    O. Pokrovskii, Analitika, No. 6, 22 (2013).Google Scholar
  8. 8.
    D. Yu. Zalepugin, N. A. Til’kunova, I. V. Chernysheva, and B. C. Polyakov, Sverkhkrit. Fluidy Teor. Prakt. 1 (1), 27 (2006).Google Scholar
  9. 9.
    A. A. V’yukov and Yu. V. Asaturov, Biotsevtika (2015). Scholar
  10. 10.
    D. A. Lemenovskii and V. N. Bagratashvili, Soros. Obrazov. Zh. 10, 39 (1999).Google Scholar
  11. 11.
    J. Fages, A. Marty, C. Delga, J. S. Condoret, D. Combes, and P. Frayssinet, Biomaterials 15, 650 (1994).CrossRefGoogle Scholar
  12. 12.
    P. Frayssinet, N. Rouquet, D. Mathon, A. Autefage, and J. Fages, Biomaterials 19, 2247 (1998).CrossRefGoogle Scholar
  13. 13.
    US Patent No. 6217614 Bl.Google Scholar
  14. 14.
    US Patent No. 2003/0072677 A1.Google Scholar
  15. 15.
    D. E. Anokhina, A. S. Gavrilova, and K. D. Komarova, Scholar
  16. 16.
    A. A. Dolgalev, V. A. Zelenskii, I. A. Bazikov, D. A. Brusnitsyn, Yu. A. Yudicheva, and R. A. Fadeev, Parodontologiya 21 (4), 56 (2016).Google Scholar
  17. 17.
    US Patent No. 5167961 A.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Smolentsev
    • 1
    Email author
  • M. V. Gurin
    • 1
  • A. A. Venediktov
    • 1
  • S. V. Evdokimov
    • 1
  • R. A. Fadeev
    • 2
  1. 1.Cardioplant Ltd.PenzaRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations