Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 8, pp 1296–1305 | Cite as

Production of Sodium Alginate-Based Aerogel Particles Using Supercritical Drying in Units with Different Volumes

  • N. V. Menshutina
  • D. D. LovskayaEmail author
  • A. E. Lebedev
  • E. A. Lebedev
Article
  • 52 Downloads

Abstract

A complex study of the production of sodium alginate aerogel particles by emulsion gelation and dripping methods followed by drying in supercritical carbon dioxide is conducted. The factors that affect the characteristics of the obtained materials are determined. The above-mentioned methods are tested on a semiindustrial level using high-pressure homogenization and spraying through pneumatic nozzles. The resulting gel particles are dried in a supercritical carbon dioxide medium using equipment with the volume of drying vessels of 0.25 and 2 L. The necessary characteristics and quality of the obtained aerogels do not deteriorate in the case of production scale-up.

Keywords

supercritical fluids aerogel supercritical drying homogenization spraying 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Soleimani and M. H. Abbasi, J. Mater. Proces. Technol. 199, 10 (2008).CrossRefGoogle Scholar
  2. 2.
    T. Blaszczyński, A. Ślosarczyk, and M. Morawski, Proc. Eng. 57, 200 (2013).CrossRefGoogle Scholar
  3. 3.
    Y. Shimoyama, Y. Ogata, R. Ishibashi, and Y. Iwai, Chem. Eng. Res. Des. 88, 1427 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Koebel, A. Rigacci, and P. Achard, J. Sol-Gel Sci. Technol. 63, 315 (2012).CrossRefGoogle Scholar
  5. 5.
    Z. Ulker and C. Erkey, J. Control. Release 177, 51 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Ahmadi, A. Madadlou, and A. A. Saboury, Food Chem. 196, 1016 (2016).CrossRefGoogle Scholar
  7. 7.
    T. Lu, Q. Li, W. Chen, and H. Yu, Compos. Sci. Technol. 94, 132 (2014).CrossRefGoogle Scholar
  8. 8.
    M. A. Marin, R. R. Mallepally, and M. A. McHugh, J. Supercrit. Fluids 91, 84 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Mehling, I. Smimova, U. Guenther, and R. H. H. Neubert, J. Non-Cryst. Solids 355, 2472 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Veronovski, Z. Knez, and Z. Novak, J. Supercrit. Fluids 79, 209 (2013).CrossRefGoogle Scholar
  11. 11.
    R. R. Mallepally, I. Bernard, M. A. Marin, K. R. Ward, and M. A. McHugh, J. Supercrit. Fluids 79, 202 (2013).CrossRefGoogle Scholar
  12. 12.
    P. Aguihon, M. Robitzer, L. David, and F. Quignard, Biomacromolecules 13, 215 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Pontić, Ž. Knez, and Z. Novak, J. Non-Cryst. Solids 432 (Part B), 519 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. V. Menshutina
    • 1
  • D. D. Lovskaya
    • 1
    Email author
  • A. E. Lebedev
    • 1
  • E. A. Lebedev
    • 1
  1. 1.Mendeleev University of Chemical TechnologyMoscowRussia

Personalised recommendations