Russian Journal of Physical Chemistry B

, Volume 11, Issue 8, pp 1260–1269 | Cite as

Composition of Products of Transformation of High-Sulfur Oil Shale in Supercritical Benzene

  • E. Yu. KovalenkoEmail author
  • Ya. Yu. Mel’nikov
  • T. A. Sagachenko
  • R. S. Min
  • Yu. F. Patrakov


The conversion of high-sulfur oil shale in a flow of supercritical benzene under pressure of 10 MPa and temperatures up to 400°C is studied. The composition of the formed liquid products is characterized by the methods of IR- and 1H NMR-spectroscopy, structural group analysis, and chromato-mass spectrometry. It is shown that the content of resin and asphaltene compounds in the pyrolyzates decreases with the increase of temperature and the fraction of aromatic fragments in their composition increases, while the fraction of aliphatic fragments decreases. The amount of polar components decreases in the oily fraction. The compounds identified in the oils are represented by normal and branched alkanes; alkenes; saturated and unsaturated naphthenes; and mono-, bi-, tri-, tetra-, and pentacyclic aromatic hydrocarbons; as well as compounds of thiophene-, benzo-, dibenzo-, and naphthothiophene series, aliphatic ethers, and ketones.


oil shales supercritical fluid extraction pyrolyzates components structure composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Strshkakova and T. V. Usova, Khim. Tverd. Tela, No. 4, 7 (2008).Google Scholar
  2. 2.
    Yu. F. Patrakov, Gorn. Inform.-Anal. Byull. 7 (12), 26 (2009).Google Scholar
  3. 3.
    M. P. Yurova, Geol. Nefti Gaza, No. 6, 53 (2014).Google Scholar
  4. 4.
    A. A. Morev, Sovrem. Probl. Nauki Obrazov., No. 6, 186 (2013).Google Scholar
  5. 5.
    V. T. Gudzenko and A. A. Varenichev, Geol., Geofiz. Razrab. Neft. Gaz. Mestorozhd., No. 9, 45 (2014).Google Scholar
  6. 6.
    Yu. F. Patrakov, N. I. Fedorova, and E. S. Pavlusha, Solid Fuel Chem. 45, 386 (2011).CrossRefGoogle Scholar
  7. 7.
    N. N. Rokosova, V. Yu. Rokosova, and Yu. V. Rokosov, Khim. Tekhnol. Topl. Masel, No. 4, 31 (2016).Google Scholar
  8. 8.
    S. V. Kardashev, A. L. Maksimov, A. V. Tarakanova, Yu. S. Kardasheva, A. V. Anisimov, and E. A. Karakhanov, Solid Fuel Chem. 50, 232 (2016).CrossRefGoogle Scholar
  9. 9.
    O. N. Fedyaeva, V. R. Antipenko, D. Yu. Dubov, T. V. Kruglyakova, and A. A. Vostrikov, J. Supercrit. Fluids 109, 157 (2016).CrossRefGoogle Scholar
  10. 10.
    V. P. Lyutoev, I. N. Burtsev, V. A. Saldin, and O. S. Golovataya, Mineralog. Tekhnogen., No. 13, 115 (2012).Google Scholar
  11. 11.
    S. K. Kuznetsov and I. N. Burtsev, Vestn. Inst. Geol. Komi Nauch. Tsentra UrO RAN, No. 12, 3 (2010).Google Scholar
  12. 12.
    A. B. Sedov, A. V. Kaplan, and V. N. Lapaev, Vestn. Nauch.-Issled. Tsentra Korp. Prava, Upravl. Venchur. Investir. Syktyvk. Univ., No. 4, 133 (2010).Google Scholar
  13. 13.
    G. V. Ignat’ev and T. I. Ivanova, Vestn. Inst. Geol. Komi Nauch. Tsentra UrO RAN, No. 11, 30 (2013).Google Scholar
  14. 14.
    D. A. Bushnev, I. N. Burtsev, O. V. Valyaeva, I. A. Petrovskii, G. V. Ignat’ev, and N. S. Burdel’naya, Vestn. Inst. Geol. Komi Nauch. Tsentra UrO RAN, No. 9, 15 (2014).Google Scholar
  15. 15.
    I. N. Burtsev, D. A. Bushnev, O. S. Kotik, D. V. Kuz’min, D. O. Mashin, and I. G. Burtseva, Izv. Komi Nauch. Tsentra UrO RAN, No. 3, 71 (2015).Google Scholar
  16. 16.
    Yu. F. Patrakov, E. S. Pavlusha, N. I. Fedorova, and Yu. A. Strizhakova, Solid Fuel Chem. 42, 65 (2008).CrossRefGoogle Scholar
  17. 17.
    The Chemist’s Handbook, Ed. by B. P. Nikol’skii (Goskhimizdat, Leningrad, 1962), Vol. 1 [in Russian].Google Scholar
  18. 18.
    G. N. Gordadze, Thermolysis of Organic Matter in Oil and Gas Exploration Geochemistry (IGiRGI, Moscow, 2002) [in Russian].Google Scholar
  19. 19.
    Modern Methods of Petroleum Studies, The Reference Book, Ed. by A. I. Bogomolov, M. B. Temyanko, and L. I. Khotyntseva (Nedra, Leningrad, 1984) [in Russian].Google Scholar
  20. 20.
    E. B. Strel’nikova, O. V. Serebrennikova, and N. V. Ryabova, Pet. Chem. 48, 420 (2008).CrossRefGoogle Scholar
  21. 21.
    A. K. Golovko, V. F. Kam’yanov, and V. D. Ogorodnikov, Geol. Geofiz. 53, 1786 (2012).Google Scholar
  22. 22.
    O. N. Fedyaeva, A. A. Vostrikov, V. R. Antipenko, A. V. Shishkin, V. I. Kolobov, and M. Ya. Sokol, Sverkhkrit. Fluidy Teor. Prakt. 11 (3), 17 (2016).Google Scholar
  23. 23.
    V. A. Kashirtsev, B. L. Nikitenko, E. A. Fursenko, and N. P. Shevchenko, in Proceedings of the 9th International Conference on Chemistry of Oil and Gas (IOA SO RAN, Tomsk, 2015), p. 18.Google Scholar
  24. 24.
    H. M. E. van Kaam-Peters and J. S. Sinninghe Damste, Org. Geochem. 27, 371 (1997).CrossRefGoogle Scholar
  25. 25.
    J. P. Cao, Z. M. Zong, X. Y. Zhao, G. F. Liu, J. Mou, F. Wang, Y. G. Huang, G. J. Zhou, H. Q. Hu, and X. Y. Wei, Oil Shale 24, 423 (2007).Google Scholar
  26. 26.
    A. Riboulleau, S. Derenne, G. Sarret, C. Largeau, F. Baudin, and J. Connan, Org. Geochem. 31, 1641 (2000).CrossRefGoogle Scholar
  27. 27.
    D. A. Bushnev and N. S. Burdel’naya, Pet. Chem. 43, 230 (2003).Google Scholar
  28. 28.
    V. M. Valyashko, Sverkhkrit. Fluidy Teor. Prakt. 1 (1), 10 (2006).Google Scholar
  29. 29.
    O. V. Zaytseva, E. E. Magomadov, Kh. M. Kadiev, E. A. Chernysheva, V. M. Kapustin, and S. N. Khadzhiev, Pet. Chem. 53, 309 (2013).CrossRefGoogle Scholar
  30. 30.
    O. N. Fedyaeva, V. R. Antipenko, A. V. Shishkin, and A. A. Vostrikov, Russ. J. Phys. Chem. B 8, 1069 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. Yu. Kovalenko
    • 1
    Email author
  • Ya. Yu. Mel’nikov
    • 2
  • T. A. Sagachenko
    • 1
  • R. S. Min
    • 1
  • Yu. F. Patrakov
    • 3
  1. 1.Institute of Petroleum Chemistry, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Federal Research Center of Coal and Coal Chemistry, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations