Russian Journal of Physical Chemistry B

, Volume 11, Issue 7, pp 1051–1055 | Cite as

Application of Sub- and Supercritical Freons in Xenogenic Bone Matrix Processing

  • D. Yu. Zalepugin
  • N. A. Tilkunova
  • I. V. Chernyshova
  • M. I. Vlasov


Sub- and supercritical freons can be successfully used in the bone matrix cleaning process. In the case of freon R22 the duration of bone matrix cleaning significantly decreases as compared to the same procedure with supercritical carbon dioxide. Freons R23, R134 and R407c which do not contain chlorine atoms are almost ineffective in this process.


supercritical extraction freons carbon dioxide xenogenic matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Drozdov, I. A. Beleneva, F. D. Lepeshkin, A. A. Krutikova, K. B. Ustinovich, O. I. Pokrovskii, and O. O. Parenago, Russ. J. Phys. Chem. B 7, 854 (2013).CrossRefGoogle Scholar
  2. 2.
    D. S. Kosyakov, S. S. Khviyuzov, N. V. Ul’yanovskii, A. Yu. Kozhevnikov, and K. G. Bogolitsyn, Russ. J. Phys. Chem. B 7, 880 (2013).CrossRefGoogle Scholar
  3. 3.
    D. A. Newman, T. A. Hoefing, R. R. Beitle, E. J. Beckman, and R. M. Enick, J. Supercrit. Fluids 6, 205 (1993).CrossRefGoogle Scholar
  4. 4.
    V. K. Popov, V. N. Bagratashvili, E. N. Antonov, and D. A. Lemenovski, Thin Solid Films 279, 66 (1996).CrossRefGoogle Scholar
  5. 5.
    O. A. Louchev, V. K. Popov, and E. N. Antonov, J. Cryst. Growth 155, 276 (1995).CrossRefGoogle Scholar
  6. 6.
    S. J. Corr, Fluorine Chem. 118, 55 (2002).CrossRefGoogle Scholar
  7. 7.
    N. Mustapa, Z. A. Manan, C. Y. Mohd Azizi, N. A. Nik Norulaini, and A. K. Mohd Omar, J. Food Eng. 95, 606 (2009).CrossRefGoogle Scholar
  8. 8.
    N. Mustapa, Z. A. Manan, C. Y. Mohd Azizi, W. B. Setianto, and A. K. Mohd Omar, Food Chem. 125, 262 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. Han, Q. Ma, J. Lu, Y. Xue, J. Xu, and C. Xue, J. Chromatogr. B 897, 90 (2012).CrossRefGoogle Scholar
  10. 10.
    J. Liu, D. Li, H. S. Byun, and M. A. McHugh, Fluid Phase Equilib. 276, 39 (2008).CrossRefGoogle Scholar
  11. 11.
    V. A. Babain, V. A. Kamachev, R. N. Kiseleva, A.A. Murzin, I. V. Smirnov, A. Yu. Shadrin, S. I. Yakimovich, and I. V. Zerova, Radiochemistry 45, 602 (2003).CrossRefGoogle Scholar
  12. 12.
    M. T. Combs, M. Ashraf-Khorassani, and L. T. Taylor, Anal. Chem. 68, 4507 (1996).CrossRefPubMedGoogle Scholar
  13. 13.
    M. Ashraf-Khorassani, L. T. Taylor, and F. K. Schweighardt, J. AOAC Int. 79, 1043 (1996).PubMedGoogle Scholar
  14. 14.
    R. P. Tracey and T. J. Britz, Appl. Environ. Microbiol. 55, 1617 (1989).PubMedPubMedCentralGoogle Scholar
  15. 15.
    E. Jungling and H. Kammermeier, Anal. Biochem. 171, 150 (1988).CrossRefPubMedGoogle Scholar
  16. 16.
    G. Klink, A. Buchs, and F. O. Gülacar, Org. Geochem. 21, 437 (1994).CrossRefGoogle Scholar
  17. 17.
    V. A. Kamachev, A. Yu. Shadrin, A. A. Murzin, and D. N. Shafikov, Sverkhkrit. Fluidy Teor. Prakt. 2 (3), 48 (2007).Google Scholar
  18. 18.
    M. S. Demin, Cand. Sci. (Pharm. Sci.) Dissertation (All-Russ. Inst. Med. Aromatic Plants, Moscow, 2010).Google Scholar
  19. 19.
    S. F. Y. Li, C. P. Ong, M. L. Lee, and H. K. Lee, J. Chromatogr. A 515, 515 (1990).CrossRefGoogle Scholar
  20. 20.
    B. N. Maksimov, V. G. Barabanov, I. L. Serushkin, et al., Industrial Organofluorine Products: A Handbook (Khimiya, Leningrad, 1990) [in Russian].Google Scholar
  21. 21.
    D. Yu. Zalepugin, V. V. Zaitzev, N. A. Tilkunova, I. V. Chernyshova, I. I. Selezneva, Yu. A. Nikonova, and M. I. Vlasov, Russ. J. Phys. Chem. B 9, 1005 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. Yu. Zalepugin
    • 1
  • N. A. Tilkunova
    • 1
  • I. V. Chernyshova
    • 1
  • M. I. Vlasov
    • 1
  1. 1.State Plant of Medicinal DrugsMoscowRussia

Personalised recommendations