Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 7, pp 1061–1069 | Cite as

On the Role of Supercritical Water in Laser-Induced Backside Wet Etching of Glass

  • M. Yu. Tsvetkov
  • V. I. Yusupov
  • P. S. Timashev
  • K. M. Golant
  • N. V. Minaev
  • S. I. Tsypina
  • V. N. Bagratashvili
Article
  • 15 Downloads

Abstract

The features and mechanisms of microcrater formation in optical silicate glass by laser-induced backside wet etching (LIBWE) are determined in a wide range of energy densities (Φ) from 4 to 103 J/cm2 for laser pulses of 5 ns length and 1 kHz repetition rate. The existence of two different mechanisms of laserinduced microcrater formation is revealed: (i) chemical etching in supercritical water (SCW), and (ii) cavitation. At Φ > 102 J/cm2 irregular craters of 1–20 μm in depth with rough walls and distinct cracks around microcrater are formed testifying that in such mode (“hard”) laser induced cavitation plays a dominant role in glass removal. At Φ < J/cm2 neat glass craters with smooth walls are formed, their size and shape are easily reproducible, cracks are not formed, and the processing area is limited to the laser spot area. In this mode (“soft mode with active cavitation”), a microcirculation of water is stimulated by cavitation without causing undesirable shock breakage. The latter is achieved thanks to the fast removal of glass etching products by microcirculation, and the inflow of “fresh” etchant (SCW) to the glass surface in the vicinity of the formed microcraters. Such mode is optimal for highly controlled laser microstructuring of glass and other optically transparent materials.

Keywords

laser-induced liquid etching supercritical water cavitation microstructuring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wang, H. Niino, and A. Yabe, Appl. Phys. A 68, 111 (1999).CrossRefGoogle Scholar
  2. 2.
    J. Wang, H. Niino, and A. Yabe, Appl. Phys. A 69 (Suppl.), S271 (1999).CrossRefGoogle Scholar
  3. 3.
    H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, Y. Kawaguchi, and A. Yabe, J. Photochem. Potobiol. A: Chem. 158, 179 (2003).CrossRefGoogle Scholar
  4. 4.
    K. Zimmer, M. Ehrhardt, and R. Böhme, in Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials, Ed. by G. Yang (Pan Stanford, Singapore, 2012).Google Scholar
  5. 5.
    J.-Y. Cheng, M.-H. Yen, and T.-H. J. Young, Micromech. Microeng. 16, 2420 (2006).CrossRefGoogle Scholar
  6. 6.
    C. Vass, K. Osvay, T. Véso, B. Hopp, and Z. Bor, Appl. Phys. A 93, 69 (2008).CrossRefGoogle Scholar
  7. 7.
    K. Zimmer and R. Böhme, Opt. Lasers Eng. 43, 1349 (2005).CrossRefGoogle Scholar
  8. 8.
    Y. Kawaguchi, H. Niino, T. Sato, A. Narazaki, and R. Kurosaki, J. Phys.: Conf. Ser. 59, 380 (2007).Google Scholar
  9. 9.
    H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, and R. Kurosaki, Appl. Surf. Sci. 253, 8287 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, Laser Photon. Rev. 7, 439 (2013).CrossRefGoogle Scholar
  11. 11.
    G. Kopitkovas, T. Lippert, J. Venturini, C. David, and A. Wokaun, J. Phys.: Conf. Ser. 59, 526 (2007).Google Scholar
  12. 12.
    J.-Y. Cheng, M.-H. Yen, C.-W. Wei, Y.-C. Chuang, and T.-H. Young, J. Micromech. Microeng. 15, 1147 (2005).CrossRefGoogle Scholar
  13. 13.
    K. Zimmer, R. Böhme, M. Ehrhardt, and B. Rauschenbach, Appl. Phys. A 101, 405 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Yu. Tsvetkov, V. I. Yusupov, N. V. Minaev, A. A. Akovantseva, P. S. Timashev, K. M. Golant, B. N. Chichkov, and V. N. Bagratashvili, Opt. Laser Technol. (in press).Google Scholar
  15. 15.
    M. G. Sirotyuk, in Acoustic Cavitation, Ed. by V. A. Akulichev and L. R. Gavrilov (Nauka, Moscow, 2008) [in Russian].Google Scholar
  16. 16.
    V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 24, 015601 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Snehalatha, C. Ravikumar, N. Sekar, V. S. Jayakumar, and I. H. Joe, J. Raman Spectrosc. 39, 928 (2008).CrossRefGoogle Scholar
  18. 18.
    V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 21, 1230 (2011).CrossRefGoogle Scholar
  19. 19.
    V. N. Bagratashvili, A. N. Konovalov, A. A. Novitskiy, M. Poliakoff, and S. I. Tsypina, Russ. J. Phys. Chem. B 3, 1154 (2009).CrossRefGoogle Scholar
  20. 20.
    Yu. S. Zavorotny, A. O. Rybaltovskii, P. V. Chernov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, and L. Dong, Glass Phys. Chem. 23, 444 (1997).Google Scholar
  21. 21.
    V. P. Skripov, E. N. Sinitsyn, P. A. Pavlov, et al., Thermal and Physical Properties of Liquids in a Metastable State (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  22. 22.
    A. Vogel, W. Lauterborn, and R. Timm, J. Fluid Mech. 206, 299 (1989).CrossRefGoogle Scholar
  23. 23.
    V. I. Yusupov, S. I. Tsypina, and V. N. Bagratashvili, Laser Phys. Lett. 11, 116001 (2014).CrossRefGoogle Scholar
  24. 24.
    P. Karásek, J. Grym, M. Roth, J. Planeta, and F. Foret, Lab on a Chip 15, 311 (2015).CrossRefGoogle Scholar
  25. 25.
    V. I. Yusupov, V. M. Chudnovskii, and V. N. Bagratashvili, Laser Phys. 20, 1641 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Prosperetti and M. S. Plesset, J. Fluid Mech. 85, 349 (1978).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. Yu. Tsvetkov
    • 1
  • V. I. Yusupov
    • 1
  • P. S. Timashev
    • 1
  • K. M. Golant
    • 2
  • N. V. Minaev
    • 1
  • S. I. Tsypina
    • 1
  • V. N. Bagratashvili
    • 1
    • 3
  1. 1.Institute of Photonic Technology Federal Center Crystallography and PhotonicsRussian Academy of SciencesTroitsk, MoscowRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations