Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 7, pp 1095–1102 | Cite as

Biocompatibility and Degradation of Porous Matrixes from Lactide and ε-Caprolactone Copolymers Formed in a Supercritical Carbon Dioxide Medium

  • P. S. Timashev
  • N. N. Vorobieva
  • A. A. Akovantseva
  • N. V. Minaev
  • Yu. A. Piskun
  • S. V. Kostjuk
  • I. I. Selezneva
  • I. V. Vasilenko
  • O. L. Zakharkina
  • N. Yu. Ignatieva
  • R. K. Chailakhyan
  • V. V. Lunin
  • V. N. Bagratashvili
Article
  • 18 Downloads

Abstract

Cytotoxicity and in vitro degradation rate of porous matrices based on lactide and ε-caprolactone copolymers formed via supercritical foaming are determined. A high biocompatibility of materials obtained by the above method is demonstrated.

Keywords

porous materials foaming biodegradable polymers degradation rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Kuznetsova, P. S. Timashev, V. V. Dudenkova, A.V. Meleshina, E. A. Antonov, L. I. Krotova, V. K. Popov, V. N. Bagratashvili, and E. V. Zagaynova, Bull. Exp. Biol. Med. 160, 535 (2016).CrossRefPubMedGoogle Scholar
  2. 2.
    D. S. Kuznetsova, P. S. Timashev, and V. N. Bagratashvili, Sovrem. Tehnol. Med. 6, 201 (2014).Google Scholar
  3. 3.
    P. S. Timashev, D. S. Kuznetsova, A. V. Koroleva, N. N. Prodanets, A. Deiwick, Yu. A. Piskun, K. N. Bardakova, N. A. Dzhoyashvili, S. V. Kostjuk, E. V. Zagaynova, Y. A. Rochev, B. N. Chichkov, and V. N. Bagratashvili, Nanomedicine 11, 1041 (2016).CrossRefPubMedGoogle Scholar
  4. 4.
    C. A. García-González, A. Concheiro, and C. Alvarez-Lorenzo, Bioconjugate Chem. 26, 1159 (2015).CrossRefGoogle Scholar
  5. 5.
    X. Liu, J. M. Holzwarth, and P. X. Ma, Macromol. Biosci., No. 12, 911 (2012).CrossRefPubMedGoogle Scholar
  6. 6.
    H. Tai, M. L. Mather, D. Howard, W. Wang, L. J. White, J. A. Crowe, S. P. Morgan, A. Chandra, D. J. Williams, S. M. Howdle, and K. M. Shakesheff, Eur. Cells Mater. 14, 64 (2007).CrossRefGoogle Scholar
  7. 7.
    S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies, F. S. Mandel, J. D. Wang, and K. M. Shakesheff, Chem. Commun., No. 1, 109 (2001).CrossRefGoogle Scholar
  8. 8.
    L. I. Cabezas, V. Fernandez, R. Mazarro, I. Gracia, A. de Lucas, and J. F. Rodríguez, J. Supercrit. Fluids 63, 155 (2012).CrossRefGoogle Scholar
  9. 9.
    L. J. White, V. Hutter, H. Tai, S. M. Howdle, and K. M. Shakesheff, Acta Biomater. 8, 61 (2012).CrossRefPubMedGoogle Scholar
  10. 10.
    Z. L. Mou, L. J. Zhao, Q. A. Zhang, J. Zhang, and Z. Q. Zhang, J. Supercrit. Fluids 58, 398 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Salerno, E. di Maio, S. Iannace, and P. A. Netti, J. Supercrit. Fluids 58, 158 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Reignier, R. Gendron, and M. F. Cuhampagne, J. Cell. Plast. 43, 459 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Salerno, M. A. Fanovich, and C. D. Pascual, J. Supercrit. Fluids 95, 394 (2015).CrossRefGoogle Scholar
  14. 14.
    I. Tsivintzelis, E. Pavlido, and C. Panayiotou, J. Supercrit. Fluids 42, 265 (2007).CrossRefGoogle Scholar
  15. 15.
    P. S. Timashev, N. N. Vorob’eva, N. V. Minaev, Yu. A. Piskun, I. V. Vasilenko, S. V. Kostyuk, S. G. Lakeev, V. V. Lunin, and V. N. Bagratashvili, Sverkhkrit. Fluidy Teor. Prakt. 10 (4), 42 (2015).Google Scholar
  16. 16.
    Yu. A. Piskun, I. V. Vasilenko, S. V. Kostjuk, K. V. Zaitsev, G. S. Zaitseva, and S. S. Karlov, J. Polym. Sci., Part A 48, 1230 (2010).CrossRefGoogle Scholar
  17. 17.
    Yu. A. Piskun, I. V. Vasilenko, K. V. Zaitsev, S. S. Karlov, G. S. Zaitseva, L. V. Gaponik, and S. V. Kostyuk, Russ. Chem. Bull. 64, 181 (2015).CrossRefGoogle Scholar
  18. 18.
    K. V. Zaitsev, S. S. Karlov, A. A. Selina, Yu. F. Oprunenko, A. V. Churakov, B. Neumuller, J. A. K. Howard, and G. S. Zaitseva, Eur. J. Inorg. Chem. 10, 1987 (2006).CrossRefGoogle Scholar
  19. 19.
    E. Pretsch, F. Bühlmann, and C. Affolter, Structure Determination of Organic Compounds (Springer, Berlin, 2000).CrossRefGoogle Scholar
  20. 20.
    N. A. del Fanti, IR Spectroscopy of Polymers (Thermo Fisher Scientific, Madison, WI, 2008).Google Scholar
  21. 21.
    I. I. Selezneva, I. V. Savintseva, E. F. Vikhlyantseva, G. A. Davydova, and B. K. Gavrilyuk, Kletoch. Tekhnol. Biol. Med., No. 3, 135 (2006).Google Scholar
  22. 22.
    D. Dakshinamoorthy and F. Peruch, J. Polym. Sci., Part A 50, 2161 (2012).CrossRefGoogle Scholar
  23. 23.
    D. Pappalardo, L. Annunziata, and C. Pellecchia, Macromolecules 42, 6056 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. S. Timashev
    • 1
  • N. N. Vorobieva
    • 1
  • A. A. Akovantseva
    • 1
  • N. V. Minaev
    • 1
  • Yu. A. Piskun
    • 2
  • S. V. Kostjuk
    • 2
  • I. I. Selezneva
    • 3
  • I. V. Vasilenko
    • 2
  • O. L. Zakharkina
    • 1
  • N. Yu. Ignatieva
    • 4
  • R. K. Chailakhyan
    • 5
  • V. V. Lunin
    • 4
  • V. N. Bagratashvili
    • 1
    • 4
  1. 1.Institute of Photonic Technology Federal Center Crystallography and PhotonicsRussian Academy of SciencesTroitsk, MoscowRussia
  2. 2.Research Institute for Physicochemical ProblemsBelarusian State UniversityMinskBelarus
  3. 3.Institute for Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia
  4. 4.Department of ChemistryMoscow State UniversityMoscowRussia
  5. 5.Gamaleya Research Institute of Epidemiology and MicrobiologyMoscowRussia

Personalised recommendations