Skip to main content
Log in

Moxifloxacin Micronization via Supercritical Antisolvent Precipitation

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Supercritical antisolvent (SAS) precipitation is employed for micronization of moxifloxacin (MF), an antibiotic from the fluoroquinolone group, to develop new dosage forms of MF. With this technique, we produced, in a controllable fashion, MF particles with different sizes (0.6–8.0 μm) and morphologies (from polygonal sheets to elongated rectangular prisms). The infrared and circular dichroism spectroscopy data suggest that micronization of MF via SAS does not alter its chemical structure or cause racemization. We demonstrate that micronized forms of MF drug substance exhibit a 20 to 30% increase in the dissolution rate, as compared to the initial MF form, in a physiological medium (pH 7.4). The dissolution rate of the microparticles obtained via SAS micronization depends on their size, morphology, and degree of crystallinity. The various data obtained in this study will be used in formulating new dosage forms of MF for treatment of drug-resistant forms of tuberculoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. R. Cozarelli, Science 207, 953 (1980).

    Article  Google Scholar 

  2. F. Schmitz, B. Hofmann, B. Hansen, S. Scheuring, and M. J. Luckefahr, Antimicrob. Chemother. 41, 481 (1998).

    Article  CAS  Google Scholar 

  3. A. J. Bryskier, Lowther, 233 (2002).

    Google Scholar 

  4. S. H. Gillespie, Eur. Respir. Rev. 25, 19 (2016).

    Article  PubMed  Google Scholar 

  5. M. Fouad and J. C. Gallagher, Ann. Pharmacother. 45, 1439 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. E. N. Padeiskaya and V. P. Yakovlev, Fluoroquinolone (Bioinform, Moscow, 1995) [in Russian].

    Google Scholar 

  7. J. Bertino, Jr. and D. Fish, Clin. Ther. 22, 798 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. V. V. Lunin and E. S. Lokteva, “Green” Chemistry in Russia (Mosk. Gos. Univ., Moscow, 2004), p. 10 [in Russian].

    Google Scholar 

  9. I. Pasquali and R. Bettini, Int. J. Pharm. 364, 176 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. K. Moribe, Y. Tozuka, and K. Yamamoto, Adv. Drug Deliv. Rev. 60, 328 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. H. Tai, V. K. Popov, K. M. Shakesheff, and S. M. Howdle, Biochem. Soc. Trans. 35, 516 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, L. I. Krotova, O. O. Parenago, and V. V. Lunin, Russ. J. Phys. Chem. B 10, 1072 (2016).

    Article  CAS  Google Scholar 

  13. V. N. Bagratashvili, A. M. Egorov, L. I. Krotova, A. V. Mironov, V. Ya. Panchenko, O. O. Parenago, V. K. Popov, I. A. Revelsky, P. S. Timashev, and S. I. Tsypina, Russ. J. Phys. Chem. 6, 804 (2012).

    Article  CAS  Google Scholar 

  14. V. N. Bagratashvili, S. E. Bogorodskii, A. M. Egorov, L. I. Krotova, V. K. Popov, and V. I. Sevast’yanov, Sverkhkrit. Fluidy Teor. Prakt. 10 (3), 26 (2015).

    Google Scholar 

  15. E. V. Kudryashova, I. M. Deigen, K. V. Sukhoverkov, L. Yu. Filatova, N. L. Klyachko, A. M. Vorobei, O. I. Pokrovskii, K. B. Ustinovich, O. O. Parenago, E. N. Antonov, A. G. Dunaev, L. I. Krotova, V. K. Popov, and A. M. Egorov, Sverkhkrit. Fluidy Teor. Prakt. 10 (4), 52 (2015).

    Google Scholar 

  16. I. M. Deigen, A. M. Egorov, and E. V. Kudryashova, Vestn. Mosk. Univ., Ser. 2: Khim. 56, 387 (2015).

    Google Scholar 

  17. S. Sahoo, C. K. Chakraborti, S. C. Mishra, U. N. Nanda, and S. J. Naik, Pharm. Res. 4, 1129 (2011).

    CAS  Google Scholar 

  18. V. L. Dorofeev, Khim.-Farm. Zh. 38, 45 (2004).

    Google Scholar 

  19. N. F. A. Dsugi and A. A. Elbashir, Spectrochim. Acta, Part A 137, 804 (2015).

    Article  CAS  Google Scholar 

  20. S. Zu, L. Yang, J. Huang, C. Ma, W. Wang, C. Zhao, and Y. Zu, Int. J. Mol. Sci. (Washington, D.C.) 13, 8869 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kudryashova.

Additional information

Original Russian Text © E.V. Kudryashova, K.V. Sukhoverkov, I.M. Deygen, A.M. Vorobei, O.I. Pokrovskiy, O.O. Parenago, D.E. Presnov, A.M. Egorov, 2016, published in Sverkhkriticheskie Flyuidy. Teoriya i Praktika, 2016, Vol. 11, No. 3, pp. 71–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashova, E.V., Sukhoverkov, K.V., Deygen, I.M. et al. Moxifloxacin Micronization via Supercritical Antisolvent Precipitation. Russ. J. Phys. Chem. B 11, 1153–1162 (2017). https://doi.org/10.1134/S1990793117070120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117070120

Keywords

Navigation