Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 7, pp 1070–1077 | Cite as

Transformations of Pyrite and Pyrrhotite in Supercritical Water

  • O. N. Fedyaeva
  • A. A. Vostrikov
Article

Abstract

The interaction of pyrite (FeS2) with water at the uniform heating (1.5 K/min) of the reaction mixture to 923 K and its subsequent cooling (about 3 K/min) to 423 K is studied. The reaction products are analyzed using the methods of mass-spectrometry, elemental and X-ray diffraction analyses, and scanning electron microscopy. It is established that H2S, SO2, and rhombic and hexagonal pyrrhotite (FeS) are formed while heating, and the subsequent cooling of the reaction system gives rise to the formation of H2S, H2, cubic pyrite, and monoclinic pyrrhotite exhibiting ferromagnetic properties. It is shown that the transformations FeS2 → FeS → FeS x (1 < x ≤ 2) are accompanied by changes in the morphology and size of particles.

Keywords

pyrite pyrrhotite supercritical water hydrogen sulfide sulfur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wächtershäuser, Prog. Biophys. Mol. Biol. 58, 85 (1992).CrossRefGoogle Scholar
  2. 2.
    R. Hazen, N. Boctor, J. A. Brandes, G. D. Cody, R. J. Hemley, A. Sharma, and H. S. Yoder, Jr., J. Phys.: Condens. Matter 14, 11489 (2002).Google Scholar
  3. 3.
    C. D. Cody, N. Z. Boctor, J. A. Brandes, T. R. Filley, R. M. Hazen, and H. S. Yoder, Jr., Geochim. Cosmochim. Acta 68, 2185 (2004).CrossRefGoogle Scholar
  4. 4.
    I. R. Klesment and K. E. Urov, Goryuch. Slantsy, No. 2/2, 139 (1985).Google Scholar
  5. 5.
    X. Ma, J. Zheng, G. Zheng, W. Xu, Y. Qian, Y. Xia, Z. Wang, X. Wang, and X. Ye, Fuel 167, 329 (2016).CrossRefGoogle Scholar
  6. 6.
    Y. Yoneyama, S. Maekawa, A. Kanao, and N. Tsubaki, Energy Fuels 17, 504 (2003).CrossRefGoogle Scholar
  7. 7.
    H. Chen, B. Li, and B. Zhang, Fuel 79, 1627 (2000).CrossRefGoogle Scholar
  8. 8.
    F. Huang, L. Zhang, B. Yi, Z. Xia, and C. Zheng, Fuel Proces. Technol. 131, 458 (2015).CrossRefGoogle Scholar
  9. 9.
    Chemical Technology of Solid Fossil Fuels, Ed. by G. N. Makarov and G. D. Kharlampovich (Khimiya, Moscow, 1986) [in Russian].Google Scholar
  10. 10.
    H.-L. Zhao, Z.-Q. Bai, J.-C. Yan, J. Bai, and W. Li, Fuel Proces. Technol. 131, 304 (2015).CrossRefGoogle Scholar
  11. 11.
    E. Jorjani, J. Yperman, R. Carleer, and B. Rezai, Fuel 85, 114 (2006).CrossRefGoogle Scholar
  12. 12.
    J. H. Levy and T. J. White, Fuel 67, 1336 (1988).CrossRefGoogle Scholar
  13. 13.
    H. Ma, S. Wang, and L. Zhou, Adv. Mater. Res. 524–527, 1939 (2012).CrossRefGoogle Scholar
  14. 14.
    A. L. Lapidus and Yu. A. Strizhakova, Vestn. Ross. Akad. Nauk 74, 823 (2004).Google Scholar
  15. 15.
    O. N. Fedyaeva, V. R. Antipenko, D. Y. Dubov, T. V. Kruglyakova, and A. A. Vostrikov, J. Supercrit. Fluids 109, 157 (2016).CrossRefGoogle Scholar
  16. 16.
    A. A. Vostrikov, O. N. Fedyaeva, I. I. Fadeeva, and M. Ya. Sokol, Russ. J. Phys. Chem. B 4, 1051 (2010).CrossRefGoogle Scholar
  17. 17.
    Chemical Encyclopedy (Bol’sh. Ross. Entsiklopediya, Moscow, 1995), Vol. 4 [in Russian].Google Scholar
  18. 18.
    O. N. Fedyaeva, A. A. Vostrikov, A. V. Shishkin, M. Ya. Sokol, L. S. Borisova, and V. A. Kashirtsev, Russ. J. Phys. Chem. B 6, 793 (2012).CrossRefGoogle Scholar
  19. 19.
    Powder Diffraction File, PDF-4+, Release 2012.Google Scholar
  20. 20.
    E. W. Lemmon, M. O. McLinden, and D. G. Freid, Thermophysical Properties of Fluid Systems. NIST Chemistry WebBook, NIST Standard Reference Database No. 69, Ed. by P. J. Linstrom and W. G. Mallard (Natl. Inst. Standards Technol., Gaithersburg, MD, 2011). http://webbook.nist.gov/chemistry/fluid/.Google Scholar
  21. 21.
    H. J. Yokokawa, Natl. Chem. Labor. Ind. 83, 27 (1988).Google Scholar
  22. 22.
    Rock Encyclopedy. http://www.mining-enc.ru/.Google Scholar
  23. 23.
    R. Murphy and D. R. Strongin, Surf. Sci. Rep. 64, 1 (2009).CrossRefGoogle Scholar
  24. 24.
    A. Gartman and G. W. Luther III, Geochim. Cosmochim. Acta 120, 447 (2013).CrossRefGoogle Scholar
  25. 25.
    R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Substances, The Handbook (Drofa, Moscow, 2006) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations