Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 7, pp 1056–1060 | Cite as

Fabrication of the Components for a Sustained-Release Injectable Dosage Form of Acetylsalicylic Acid Using Supercritical Carbon Dioxide

  • E. N. Antonov
  • S. E. Bogorodskii
  • L. I. Krotova
  • V. K. Popov
  • V. Yu. Belov
  • S. V. Kursakov
  • V. I. Sevastyanov
Article
  • 10 Downloads

Abstract

Fabrication of fine-grained (10–100 μm) bioresorbable powders of aliphatic polyesters containing therapeutically significant (up to 10 wt %) concentrations of acetylsalicylic acid using supercritical CO2 is studied. The process for fabricating the components of sustained-release injectable dosage forms of acetylsalicylic acid is elaborated. The kinetics of release of acetylsalicylic acid from polylactide microparticles into the normal saline solution in vitro is studied by high-performance liquid chromatography.

Keywords

sustained-release drug forms polymeric microparticles encapsulation of bioactive components supercritical carbon dioxide acetylsalicylic acid release kinetics HPLC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. K. Alekhin, Sorovs. Obraz. Zh. 10, 3 (1999).Google Scholar
  2. 2.
    M. D. Mashkovskii, Drugs (Torgsin, Kharkov, 1998) [in Russian].Google Scholar
  3. 3.
    I. N. Bokarev, V. M. Shchepotin, and Ya. M. Ena, Intravascular Blood Coagulation (Zdorov’e, Kiev, 1989) [in Russian].Google Scholar
  4. 4.
    E. P. Panchenko, Russ. Med. Zh. 10, 33 (2002).Google Scholar
  5. 5.
    Klin. Farmakol. Terap. 11, 11 (2002).Google Scholar
  6. 6.
    V. I. Metelitsa, Handbook on Clinical Pharmacology of Cardiovascular Drugs (Binom, Nevsk. Dialekt, Moscow, St. Petersburg, 2002) [in Russian].Google Scholar
  7. 7.
    X. Li and B. R. Justi, Design of Controlled Release Drug Delivery Systems (McGraw-Hill, New York, 2006).Google Scholar
  8. 8.
    A. A. Tikhobaeva, L. A. Salomatina, and V. I. Sevast’yanov, Vestn. Transplantol. Iskusstv. Organov 1, 42 (2001).Google Scholar
  9. 9.
    A. A. Tikhobaeva, L. A. Salomatina, and V. I. Sevast’yanov, Vestn. Transplantol. Iskusstv. Organov 4, 50 (2003).Google Scholar
  10. 10.
    I. Pasquali and R. Bettini, Int. J. Pharm. 364, 176 (2008).CrossRefGoogle Scholar
  11. 11.
    F. M. Gumerov, A. N. Sabirzyanov, and G. I. Gumerova, Sub- and Supercritical Fluids in Polymer Processing (Fen, Kazan, 2000) [in Russian].Google Scholar
  12. 12.
    Biocompatible Materials, Ed. by V. I. Sevast’yanov and M. P. Kirpichnikov (MIA, Moscow, 2011) [in Russian].Google Scholar
  13. 13.
    H. Tai, V. K. Popov, K. M. Shakesheff, and S. M. Howdle, Biochem. Soc. Trans. 35, 516 (2007).CrossRefGoogle Scholar
  14. 14.
    A. I. Volozhin, A. G. Karakov, Yu. P. Sukhanov, A. B. Shekhter, V. K. Popov, E. N. Antonov, and M. Karrott, Stomatologiya 77 (4), 4 (1998).Google Scholar
  15. 15.
    B. Y. Shekunov, P. Chattopadhyay, and J. Seitzinger, in Polymeric Drug Delivery II, Ed. by S. Svenson, ACS Symp. Ser. 924, 234 (2006).CrossRefGoogle Scholar
  16. 16.
    I. Pasquali, R. Bettini, and F. Giordano, Adv. Drug Deliv. Rev. 60, 399 (2008).CrossRefGoogle Scholar
  17. 17.
    E. S. Kolotova, S. G. Egorova, A. A. Ramonova, S. E. Bogorodskii, V. K. Popov, I. I. Agapov, and M. P. Kirpichnikov, Acta Natur. 4, 105 (2012).Google Scholar
  18. 18.
    S. E. Bogorodskii, L. I. Krotova, S. A. Minaeva, G.V. Mishakov, V. K. Popov, Yu. B. Basok, and V. I. Sevast’yanov, Perspekt. Mater., No. 1, 23 (2013).Google Scholar
  19. 19.
    B. S. Sekhon, Int. J. Pharm. Tech. Res. 2, 810 (2010).Google Scholar
  20. 20.
    Y. Kawashima and P. York, Adv. Drug Deliv. Rev. 60, 297 (2008).CrossRefGoogle Scholar
  21. 21.
    www.natex.at/.Google Scholar
  22. 22.
    S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies, F. S. Mandel, J. D. Wang, and K.M. Shakesheff, Chem. Commun., No. 1, 109 (2001).CrossRefGoogle Scholar
  23. 23.
    V. N. Bagratashvili, S. E. Bogorodskii, A. N. Konovalov, A. P. Kubyshkin, A. A. Novitskii, V. K. Popov, K. Upton, and S. M. Khoudl, Sverkhkrit. Fluidy Teor. Prakt. 2 (1), 53 (2007).Google Scholar
  24. 24.
    S. E. Bogorodsky, L. I. Krotova, S. A. Minaeva, and V. K. Popov, Russ. J. Phys. Chem. B 9, 1011 (2015).CrossRefGoogle Scholar
  25. 25.
    E. N. Antonov, D. V. Butnaru, A. Z. Vinarov, E. V. Istranova, S. A. Minaeva, and V. K. Popov, Eksp. Klin. Farmakol. 78, 36 (2015).Google Scholar
  26. 26.
    E. N. Antonov, S. E. Bogorodskii, L. I. Krotova, S. A. Minaeva, A. V. Mironov, G. V. Mishakov, and V. K. Popov, in Modern Laser-Information Technology, Ed. by V. Ya. Panchenko and F. V. Lebedev (Interkontakt Nauka, Moscow, 2015), p. 550 [in Russian].Google Scholar
  27. 27.
    V. N. Bagratashvili, S. E. Bogorodskii, A. M. Egorov, L. I. Krotova, V. K. Popov, and V. I. Sevast’yanov, Sverkhkrit. Fluidy Teor. Prakt. 10 (3), 26 (2015).Google Scholar
  28. 28.
    E. N. Antonov, A. G. Dunaev, and V. K. Popov, Sverkhkrit. Fluidy Teor. Prakt. 10 (4), 36 (2015).Google Scholar
  29. 29.
    E. N. Antonov, S. E. Bogorodskii, B. M. Fel’dman, E. A. Markvicheva, L. D. Rumsh, and V. K. Popov, Sverkhkrit. Fluidy Teor. Prakt. 3 (1), 34 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. N. Antonov
    • 1
  • S. E. Bogorodskii
    • 1
  • L. I. Krotova
    • 1
  • V. K. Popov
    • 1
  • V. Yu. Belov
    • 2
  • S. V. Kursakov
    • 2
  • V. I. Sevastyanov
    • 2
    • 3
  1. 1.Institute of Photonic Technologies, Federal Research Center Crystallography and PhotonicsRussian Academy of SciencesTroitsk, MoscowRussia
  2. 2.Institute of Medical and Biological Research and TechnologiesMoscowRussia
  3. 3.Shumakov Federal Research Center of Transplantology and Artificial OrgansMoscowRussia

Personalised recommendations