Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 985–1001 | Cite as

A Computational Study of the Interaction CN with the Pristine, Ge-Doped of AlPNTs

  • M. Rezaei-SametiEmail author
  • M. Pahlevane
Chemical Physics of Nanomaterials


In this research, the effects of interaction cyanide ion (CN) with the pristine and Ge-doped aluminum phosphide nanotube (AlPNTs) are investigated using density functional theory (DFT). At first step all considered configuration models are optimized at the B3LYP/6-31G(d) level of theory. From optimized structures the structural, electrical, NMR parameters, quantum descriptors such as global hardness, global softness, electrophilicity, gap energy, Fermi level energy, electronic chemical potential, electronegativity, natural bond orbital (NBO) and molecular electrostatic potential (MEP) of all models are calculated and results are analyzed. The negative values of Eads reveal that the adsorption process of all models are exothermic, physisorption energetically favored, and spontaneous. Inspections of results demonstrate that the adsorption of CN on the exterior surface of pristine AlPNTs is stronger than on the exterior surface of Ge-doped AlPNTs. The NBO results indicate that the E(2) values of interaction between of (σAl−P) as donors and some σ* or n* orbitals as acceptors orbital at the all Ge-doped models are lower than those pristine models. The MEP results indicate that the positive potential is localized on Al atoms and it seems that these atoms are suitable sites for nucleophilic attack of CN.


aluminum phosphide nanotube CN interaction density functional theory natural bonding orbital molecular electrostatic potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Environmental Protection Agency, Washington, 2010).Google Scholar
  2. 2.
    G. A. Atlanta, Toxicological Profile for Cyanide, ATSDR Agency for Toxic Substances and Disease Registry (Public Health Service, US Department of Health and Human Services, 2006).Google Scholar
  3. 3.
    P. W. Brandt-Rauf, L. F. Fallon, T. Tarantini, et al., Braz. J. Ind. Med. 45, 606 (1998).Google Scholar
  4. 4.
    G. G. Stavropoulos, G. S. Skodras, and K. G. Papadimitriou, Appl. Thermal. Eng. 74, 182 (2013).CrossRefGoogle Scholar
  5. 5.
    P. Patnaik, Handbook of Environmental Analysis Chemical Pollutants in Air, Water, Soil and Solid Wastes (Lewis, Macmillan, New York, 1997).CrossRefGoogle Scholar
  6. 6.
    T. Depci, Y. Onal, and K. A. Prisbrey, J. Taiwan Inst. Chem. Eng. 45, 2511 (2014).CrossRefGoogle Scholar
  7. 7.
    R. R. Dash, A. Gaur, and C. Balomajumder, J. Hazard. Mat. 163, 1 (2009).CrossRefGoogle Scholar
  8. 8.
    V. F. Brauer, H. Below, A. Kramer, et al., Eur. J. Endocrinol. 154, 229 (2006).CrossRefGoogle Scholar
  9. 9.
    J. A. Talla, Chem. Phys. 392, 71 (2012).CrossRefGoogle Scholar
  10. 10.
    W. An and C. H. Turner, Chem. Phys. Lett. 482, 274 (2009).CrossRefGoogle Scholar
  11. 11.
    S. C. Hsieh, S. M. Wang, and F. Y. Li, Carbon 49, 955 (2011).CrossRefGoogle Scholar
  12. 12.
    M. T. Baei, S. Z. Sayyed-Alangi, A. Soltani, M. Bahari, and A. Masoodi, Monatsch. Chem. 142, 1 (2011).CrossRefGoogle Scholar
  13. 13.
    M. T. Baei, A. Soltani, P. Torabi, and A. V. Moradi, Monatsch. Chem. 142, 979 (2011).CrossRefGoogle Scholar
  14. 14.
    M. T. Baei, A. Ahmadi Peyghan, and M. Moghimi, Monatsch. Chem. 143, 1463 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Prabhaharan, A. R. Prabakaran, S. Gunasekaran, and S. Srinivasan, Mol. Biol. Spec. 136, 494 (2015).Google Scholar
  16. 16.
    B. Zurek and J. J. Autschbach, Am. Chem. Soc. 126, 13079 (2004).CrossRefGoogle Scholar
  17. 17.
    A. Nojeh, G. W. Lakatos, S. Peng, K. Cho, and R. F. W. Pease, Nano Lett. 3, 1187 (2003).CrossRefGoogle Scholar
  18. 18.
    P. Senthil Kumar, K. Vasudevan, A. Prakasam, M. Geetha, and P. M. Anbarasan, Spectrochim. Acta A 77, 45 (2010).CrossRefGoogle Scholar
  19. 19.
    M. Rezaei Sameti and N. Ali Safarzadeh, Iran. Chem. Commun. 2, 222 (2014).Google Scholar
  20. 20.
    M. Rezaei-Sameti and F. Khaje Joushaghani, Quant. Mater. 4, 1 (2015).Google Scholar
  21. 21.
    M. Rezaei-Sameti and S. Yaghoobi, Comput. Condens. Matter 3, 21 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Rezaei-Sameti and A. Kazemi, Turk. J. Phys. 39, 128 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Rezaei-Sameti and F. Saki, Phys. Chem. Res. 3, 265 (2015).Google Scholar
  24. 24.
    N. W. S. Kam and H. Dai, J. Am. Chem. Soc. 127, 6021 (2005).CrossRefGoogle Scholar
  25. 25.
    P. K. Chattaraj, U. Sarkar, and D. R. Roy, Chem. Rev. 106, 2065 (2006).CrossRefGoogle Scholar
  26. 26.
    K. K. Hazarika, N. C. Baruah, and R. C. Deka, Struct. Chem. 20, 1079 (2009).CrossRefGoogle Scholar
  27. 27.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, et al., J. Commun. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  28. 28.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1972).CrossRefGoogle Scholar
  29. 29.
    M. T. Baei, M. Moghimi, P. Torabi, and A. Varasteh Moradi, Comput. Theor. Chem. 972, 14 (2011).CrossRefGoogle Scholar
  30. 30.
    R. G. Parr, L. Szentpaly, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).CrossRefGoogle Scholar
  31. 31.
    R. G. Pearson, J. Chem. Sci. 111, 369 (2005).CrossRefGoogle Scholar
  32. 32.
    B. C. Gerstein and C. R. Dybowski, Transient Techniques in NMR of Solid (Academic, New York, 1985).Google Scholar
  33. 33.
    M. Mirzaei and M. Mirzaei, J. Mol. Struct.: THEOCHEM 951, 69 (2010).CrossRefGoogle Scholar
  34. 34.
    M. Zaboli and H. Raissi, Struct. Chem. 26, 1059 (2015).CrossRefGoogle Scholar
  35. 35.
    M. Mirzaei and M. Mirzaei, Monatsh. Chem. 142, 115 (2011).CrossRefGoogle Scholar
  36. 36.
    M. Mirzaei and M. Mirzaei, Comput. Theor. Chem. 963, 294 (2011).CrossRefGoogle Scholar
  37. 37.
    C. Tabtimsai, S. Keawwangchai, N. Nunthaboot, et al., J. Mol. Model. 18, 3941 (2012).CrossRefGoogle Scholar
  38. 38.
    S. Stegmeier, M. Fleischer, and P. Hauptmann, Sens. Actuators B: Chem. 148, 439 (2010).CrossRefGoogle Scholar
  39. 39.
    C. James, A. Amalraj, R. Reghunathan, et al., J. Raman. Spectrosc. 37, 1381 (2006).CrossRefGoogle Scholar
  40. 40.
    L. J. Na, C. Z. Rang, and Y. S. Fang, J. Zhejiang Univ. Sci. 6, 584 (2005).Google Scholar
  41. 41.
    G. Keresztury, S. Holly, J. Varga, G. Besenyei, et al., J. R. Spec. Chim. Acta 49, 2007 (1993).CrossRefGoogle Scholar
  42. 42.
    E. Scrocco and J. Tomasi, Quantum Chem. 103, 115 (1978).Google Scholar
  43. 43.
    F. J. Luque, J. M. Lopez, and M. Orozco, Theor. Chem. Acc. 103, 343 (2000).CrossRefGoogle Scholar
  44. 44.
    E. Scrocco and J. Tomasi, Curr. Chem. 7, 95 (1973).Google Scholar
  45. 45.
    Y. Li, Y. Liu, H. Wang, X. Xiong, et al., Molecules 18, 877 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of ScienceMalayer UniversityMalayerIran

Personalised recommendations