Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 1002–1011 | Cite as

Titania Gold Composite: Effect of Illumination on Size of Gold Nanoparticles with Consequent Implication on Photocatalytic Water Splitting

  • Girivyankatesh HippargiEmail author
  • Pratap Reddy Maddigapu
  • Nitin Labhsetwar
  • Sadhana Rayalu
Chemical Physics of Nanomaterials

Abstract

This work deals with the study of photodeposition (PD) of gold nanoparticles (AuNPs) on TiO2 by using different illumination sources, Medium pressure Mercury lamp (ML), Solar Simulator equipped with AM 1.5 (SL) and Tungsten lamp (WL). Different particle size of AuNPs on TiO2 were obtained by photodeposition method under different illumination sources, which clearly proves the influence of light source on the synthesis of Au–TiO2. The plasmonic activity of Au–TiO2 photocatalyst for water splitting reaction was observed to be strongly influenced by the particle size of Au as well as illumination source. Amongst the three different illumination sources used, smallest particle size for AuNP–TiO2 were observed under ML followed by SL and WL, as revealed by TEM analysis. Different illumination sources were also investigated to evaluate the activity of Au–TiO2 samples thus prepared under different illumination conditions. The order of hydrogen evolution rate (HER) observed for Au–TiO2 with different source of illuminations is ML > SL > WL. The highest HER of 1709 μmol/h was observed for Au–TiO2, which was synthesized and evaluated under ML irradiation. This may be explained on the basis of reduced catalytic activity and photothermal effect of Au nanoparticles with increasing particle size.

Keywords

photocatalyst particle size illumination effect photothermal photoreduction water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005). doi 10.1143/JJAP.44.8269CrossRefGoogle Scholar
  2. 2.
    X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010). doi 10.1021/crl001645CrossRefGoogle Scholar
  3. 3.
    A. Fujishima and K. Honda, Nature 238, 37 (1972). doi 10.1038/238037a0CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, Jpn. Nanonet. Bull.Google Scholar
  5. 5.
    M. Ni, M. K. H Leung, D. Y. C. Leung, and K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007). doi 10.1016/j.rser.2005.01.009CrossRefGoogle Scholar
  6. 6.
    W. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem. 98, 13669 (1994). doi 10.1021/jl00102a038CrossRefGoogle Scholar
  7. 7.
    D. Dvoranova, V. Brezova, M. Mazúr, and A. Malati, Appl. Catal. B: Environ. 37, 91 (2002). doi 10.1016/S0926-3373(01)00335-6CrossRefGoogle Scholar
  8. 8.
    X.-Z. Shen, Z.-C. Liu, S.-M. Xie, and J. Guo, J. Hazard. Mater. 162, 1193 (2009). doi 10.1016/j.jhazmat.2008.06.004CrossRefGoogle Scholar
  9. 9.
    H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003). doi 10.1021/jp030133hCrossRefGoogle Scholar
  10. 10.
    T.-H. Xu, C.-L. Song, Y. Liu, and G.-R. Han, J. Zhejiang Univ. Sci. B 7, 299 (2006). doi 10.1631/jzus.2006.B0299CrossRefGoogle Scholar
  11. 11.
    S. S. Rayalu, D. Jose, P. A. Mangrulkar, et al., Int. J. Hydrogen Energy 39, 3617 (2014). doi 10.1016/j.ijhydene.2013.11.120CrossRefGoogle Scholar
  12. 12.
    N. J. G. Xue Ming Wang, Guang Jun Wu, and Lan Dong Li, Adv. Mater. Res. 148, 1258 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Haruta, Catal. Today 36, 153 (1997) doi 10.1016/S0920-5861(96)00208-8CrossRefGoogle Scholar
  14. 14.
    S. S. Rayalu, D. Jose, M. V. Joshi, et al., Appl. Catal. B: Environ. 142, 684 (2013). doi 10.1016/j.apcatb.2013.05.057CrossRefGoogle Scholar
  15. 15.
    J. Taing, M. H. Cheng, and J. C. Hemminger, ACS Nano 5, 6325 (2011). doi 10.1021/nn201396vCrossRefGoogle Scholar
  16. 16.
    Y. Hu, X. Song, S. Jiang, and C. Wei, Chem. Eng. J. 274, 102 (2015). doi 10.1016/j.cej.2015.03.135CrossRefGoogle Scholar
  17. 17.
    M. Maicu, M. C. Hidalgo, G. Colon, and J. A. Navio, J. Photochem. Photobiol. A: Chem. 217, 275 (2011). doi 10.1016/j.jphotochem.2010.10.020CrossRefGoogle Scholar
  18. 18.
    S. C. Chan and M. A. Barteau, Langmuir 21, 5588 (2005). doi 10.1021/la046887kCrossRefGoogle Scholar
  19. 19.
    L. Wen, B. Liu, C. Liu, and X. Zhao, J. Wuhan Univ. Technol. Mater. Sci. Ed. 24, 258 (2009). doi 10.1007/sl1595-009-2258-210.1007/slCrossRefGoogle Scholar
  20. 20.
    H. Wang, T. You, W. Shi, et al., J. Phys. Chem. C 116, 6490 (2012). doi 10.1021/jp212303qCrossRefGoogle Scholar
  21. 21.
    A. Tanaka, S. Sakaguchi, K. Hashimoto, and H. Kominami, ACS Catal. 3, 79 (2013). doi 10.1021/cs3006499CrossRefGoogle Scholar
  22. 22.
    O. Nicoletti, F. de la Pena, R. K. Leary,et al., Nature 502, 80 (2013).CrossRefGoogle Scholar
  23. 23.
    S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 11101 (2005). doi 10.1063/1.1951057CrossRefGoogle Scholar
  24. 24.
    C. Gomes Silva, R. Juarez, T. Marino, et al., J. Am. Chem. Soc. 133, 595 (2011). doi 10.1021/jal086358CrossRefGoogle Scholar
  25. 25.
    R. Rhodes, M. Beliatis, C. Smith, et al., ATI Univ. Surrey 238, 5358 (1972).Google Scholar
  26. 26.
    R. M. Navarro Yerga, M. C. Alvarez Galvan, F. del Valle, et al., ChemSusChem. 2, 471 (2009). doi 10.1002/cssc.200900018CrossRefGoogle Scholar
  27. 27.
    V. Iliev, D. Tomova, L. Bilyarska, and G. Tyuliev, J.Mol. Catal. A: Chem 263, 32 (2007). doi 10.1016/j.molcata.2006.08.019CrossRefGoogle Scholar
  28. 28.
    M. Murdoch, G. I. N. Watergiyse, M. A. Nadeem, et al., Nat. Chem. 3, 489 (2011).CrossRefGoogle Scholar
  29. 29.
    E. Kowalska, S. Rau, and B. Ohtani, J. Nanotechnol. 11 (2012). doi 10.1155/2012/361853Google Scholar
  30. 30.
    X. Huang and M. A. El-Sayed, J. Adv. Res. 1, 13 (2010). doi 10.1016/j.jare.2010.02.002CrossRefGoogle Scholar
  31. 31.
    P. R. Chandran, M. Naseer, N. Udupa, and N. Sandhyarani, Nanotechnology 23, 15602 (2011). doi 10.1088/0957-4484/23/1/015602CrossRefGoogle Scholar
  32. 32.
    S. Kumar, K. S. Gandhi, and R. Kumar, Ind. Eng. Chem. Res. 46, 3128 (2007). doi 10.1021/ie060672jCrossRefGoogle Scholar
  33. 33.
    O. Neumann, A. S. Urban, J. Day, et al., ACS Nano 7, 42 (2013). doi 10.1021/nn304948hCrossRefGoogle Scholar
  34. 34.
    A. Polman, ACS Nano 7, 15 (2013). doi 10.1021/nn305869yCrossRefGoogle Scholar
  35. 35.
    D. Han, Z. Meng, D. Wu, et al., Nanoscale Res. Lett. 6, 457 (2011). doi 10.1186/1556-276X-6-457CrossRefGoogle Scholar
  36. 36.
    R. Kydd, J. Scott, W. Y. Teoh, et al., Langmuir 26, 2099 (2010). doi 10.1021/la902592pCrossRefGoogle Scholar
  37. 37.
    M. Harada, K. Okamoto, and M. Terazima, Langmuir 22, 9142 (2006). doi 10.1021/la061663iCrossRefGoogle Scholar
  38. 38.
    P. E. Hopkins, J. C. Duda, R. N. Salaway, et al., Nanoscale Microscale Thermophys. Eng. 12, 320 (2008). doi 10.1080/15567260802591985CrossRefGoogle Scholar
  39. 39.
    M. S. Dresselhaus, Solid State Physics, Part II: Optical Properties of Solids (2001).Google Scholar
  40. 40.
    A. Bumajdad and M. Madkour, Phys. Chem. Chem. Phys. 16, 7146 (2014). doi 10.1039/c3cp54411gCrossRefGoogle Scholar
  41. 41.
    D. Tsukamoto, Y. Shiraishi, Y. Sugano, et al., J. Am. Chem. Soc. 134, 6309 (2012). doi 10.1021/ja2120647CrossRefGoogle Scholar
  42. 42.
    A. Primo, A. Corma, and H. Garcia, Phys. Chem. Chem. Phys. 13, 886 (2011). doi 10.1039/C0CP00917BCrossRefGoogle Scholar
  43. 43.
    Z. W. Seh, S. Liu, M. Low, et al., Adv. Mater. 24, 2310 (2012). doi 10.1002/adma.201104241CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Girivyankatesh Hippargi
    • 1
    Email author
  • Pratap Reddy Maddigapu
    • 1
  • Nitin Labhsetwar
    • 1
  • Sadhana Rayalu
    • 1
  1. 1.EMD, CSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations