Skip to main content
Log in

Principles of Processing and Selection of Radio Occultation Observation Data for Investigating the Ionospheric F2-Layer

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Programs designed for automatic collection and processing of data on the ionospheric F2-layer parameters obtained by the radio occultation method are described. The programs developed make it possible to analyze the dependence of the parameters h m F2, foF2, and N m F2 on the level of solar activity with a given temporal and spatial resolution, which is important in solving scientific and applied problems. Global maps of the distribution of the maximum electron density of the F2-layer are presented for different seasons and times (UT and LT). The diurnal and seasonal variations of the normalized parameter N m F2 are compared with data calculated by empirical and numerical ionospheric models and with ionosonde data. The results calculated in this study reproduce all existing ionospheric anomalies and demonstrate a qualitative agreement with the data obtained by different methods. This indicates that radio occultation observation data can be efficiently used in theoretical research and empirical modeling of the ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bilitza, S. A. Brown, M. E. Wang, et al., J. Atmos. Sol.-Terr. Phys. 86, 99 (2012).

    Article  Google Scholar 

  2. A. Krankowski, I. E. Zakharenkova, A. Krypiak-Gregorczyk, et al., J. Geodesy 85, 949 (2011).

    Article  Google Scholar 

  3. S. Syndergaard, W. S. Schreiner, C. Rocken, et al., in Atmosphere and Climate: Studies by Occultation Methods (Springer, Dordrecht, 2006), p. 137.

    Book  Google Scholar 

  4. Yu. V. Cherniak and V. N. Lysenko, Telecom. Rad. Eng. 66, 1603 (2007).

    Article  Google Scholar 

  5. Yu. V. Cherniak and V. N. Lysenko, Acta Geophys. 61, 1289 (2013).

    Article  Google Scholar 

  6. X. Yue, W. Wan, L. Liu, et al., Ann. Geophys. 25, 1815 (2007).

    Article  CAS  Google Scholar 

  7. S. Sadighi, P. T. Jayachandran, N. Jakowski, et al., Adv. Space Res. 44, 1304 (2009).

    Article  CAS  Google Scholar 

  8. T. Schmidt, J. Wickert, S. Heise, et al., Ann. Geophys. 26, 3225 (2008).

    Article  Google Scholar 

  9. M. Angling, Ann. Geophys., No. 2, 353 (2008).

    Google Scholar 

  10. Y. J. Chuo, C. C. Lee, W. S. Chen, et al., Ann. Geophys. 31, 787 (2013).

    Article  Google Scholar 

  11. N. Jakowski, R. Leitinger, and M. Angling, Ann. Geophys. 47, 1049 (2004).

    Google Scholar 

  12. G. A. Hajj and L. J. Romans, Radio Sci. 33, 175 (1998).

    Article  Google Scholar 

  13. N. Jakowski, S. Heise, A. Wehrenpfenning, et al., J. Atmos. Sol.-Terr. Phys. 64, 729 (2002).

    Article  Google Scholar 

  14. Y. A. Liou, A. G. Pavelyev, S. S. Matyugov, et al., in Radio Occultation Method for Remote Sensing of the Atmosphere and Ionosphere, Ed. by Y. A. Liou (InTech, Berlin, 2010), p. 1. doi 10.5772/46148

  15. A. G. Pavelyev, Y. A. Liou, C. Y. Huang, et al., GPS Solutions 6, 101 (2002).

    Article  Google Scholar 

  16. S. Heise, N. Jakowski, A. Wehrenpfennig, et al., Geophys. Rev. Lett. 29 (14) (2002).

    Google Scholar 

  17. S. M. Stankov and N. Jakowski, J. Atmos. Sol.-Terr. Phys. 68, 134 (2006).

    Article  Google Scholar 

  18. N. Jakowski, A. Wehrenpfennig, S. Heise, et al., Geophys. Rev. Lett. 29, 1457 (2002).

    Article  Google Scholar 

  19. W. B. Jones and R. M. Gallet, J. Telecom 29, 129 (1962).

    Google Scholar 

  20. http://cdaac-ww.cosmic.ucar.edu/cdaac/products.html.

  21. http://lasp.colorado.edu/lisird/tss/noaa_radio_flux.html.

  22. M. W. Fox and L. F. McNamara, J. Atmos. Sol.-Terr. Phys. 50, 1077 (1988).

    Article  Google Scholar 

  23. I. A. Galkin, B. W. Reinisch, X. Huang, et al., Radio Sci. 47, RS0L07 (2012).

    Article  Google Scholar 

  24. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geophys. 127, 219 (1988).

    Article  CAS  Google Scholar 

  25. A. A. Namgaladze, Yu. N. Koren’kov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).

    Google Scholar 

  26. Yu. N. Korenkov, V. V. Klimenko, M. Forster, et al., J. Geophys. Res. 103 14697 (1998).

    Article  CAS  Google Scholar 

  27. V. V. Klimenko, A. T. Karpachev, M. V. Klimenko, K. G. Ratovskii, and N. A. Korenkova, Russ. J. Phys. Chem. B 10, 91 (2016).

    Article  CAS  Google Scholar 

  28. O. M. Pirog, N. M. Pole, A. Yu. Belinskaya, et al., Soln.-Zemn. Fiz., No. 16, 143 (2010).

    Google Scholar 

  29. www.cosmic.ucar.edu/cdaac/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chirik.

Additional information

Original Russian Text © N.V. Chirik, M.V. Klimenko, V.V. Klimenko, A.T. Karpachev, K.G. Ratovskii, N.A. Koren’kova, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 12, pp. 66–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirik, N.V., Klimenko, M.V., Klimenko, V.V. et al. Principles of Processing and Selection of Radio Occultation Observation Data for Investigating the Ionospheric F2-Layer. Russ. J. Phys. Chem. B 11, 1038–1046 (2017). https://doi.org/10.1134/S1990793117060197

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117060197

Keywords

Navigation