Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 974–977 | Cite as

An Insight into the Helicase Functioning Through the Hydrogen Isotope Effects

  • A. L. BuchachenkoEmail author
  • N. N. Breslavskaya
Chemical Physics of Biological Processes
  • 14 Downloads

Abstract

The replacement of hydrogen atoms by deuterium in hydrogen bonds of base pairs AT and GC decreases the rate of unwinding DNA by more than 30% per each unzipped base pair. In active helicases this isotope effect refers to the ratio of the rate constants for unzipping closed base pairs in protiated and deuterated DNA. In passive helicases the effect is controlled by ratio of equilibrium constants for opening and closing base pairs in protiated and deuterated DNA. Hydrogen/deuterium isotope effects on the unwindening of double strand DNA seems to explain, at least partly, biological and pharmacological effects of heavy water on living organisms and may be used as a means to explore new facets of the helicase functioning.

Keywords

DNA unwinding hydrogen isotope effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Newton, Biol. Bull. 66, 91 (1934).CrossRefGoogle Scholar
  2. 2.
    T. C. Barnes, Am. J. Sci. 30, 14 (1935).CrossRefGoogle Scholar
  3. 3.
    D. J. Kushner, A. Baker, and G. Dunstall, Can. J. Physiol. Pharmacol. 77, 9 (1999).CrossRefGoogle Scholar
  4. 4.
    H. Takeda, Y. Nio, H. Omori, K. Uegaki, N. Hirahara, S. Sasaki, K. Tamura, and H. Ohtani, Anticancer Drugs 9, 715 (1998).CrossRefGoogle Scholar
  5. 5.
    G. S. Timmins, Expert Opin. Ther. Pat. 24, 1067 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Sen, V. Balamurugan, K. K. Rajak, S. Chakravarti, V. Bhanuprakash, and R. K. Singh, Expert Rev. Vaccines 8, 1587 (2009).CrossRefGoogle Scholar
  7. 7.
    H. Singha, S. K. Goyal, P. Malik, and R. K. Singh, Sci. World J. (2014). doi 10.1155/2014/620906Google Scholar
  8. 8.
    P. Cioni and G. B. Strambini, Biophys. J. 82, 3246 (2002).CrossRefGoogle Scholar
  9. 9.
    T. M. Lohman and K. P. Bjornson, Ann. Rev. Biochem. 65, 169 (1996).CrossRefGoogle Scholar
  10. 10.
    S. S. Patel and K. M. Picha, Ann. Rev. Biochem. 69, 651 (2000).CrossRefGoogle Scholar
  11. 11.
    Y.-J. Jeong, M. K. Levin, and S. S. Patel, Proc. Natl. Am. Soc. 101, 7264 (2004).CrossRefGoogle Scholar
  12. 12.
    P. H. von Hippel and E. Delagoutte, Cell 104, 177 (2001).CrossRefGoogle Scholar
  13. 13.
    T. M. Lohman, Biophys. J. 68 (Suppl. 4), 180S (1995).Google Scholar
  14. 14.
    M. Manosas, M. M. Spiering, Z. Zhuang, S. J. Benkovic, and V. Croquette, Natl. Chem. Biol. 5, 904 (2009).CrossRefGoogle Scholar
  15. 15.
    M. J. Frisch et al., Gaussian 09 (Gaussian Inc., Pittsburgh, PA, 2009).Google Scholar
  16. 16.
    J. B. Foresman and E. Frish, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian Inc., Pittsburgh, 1996).Google Scholar
  17. 17.
    Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).CrossRefGoogle Scholar
  18. 18.
    R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).CrossRefGoogle Scholar
  19. 19.
    C. N. Ramachandran and E. Ruckenstein, Comput. Theor. Chem. 966, 84 (2011).CrossRefGoogle Scholar
  20. 20.
    S. S. Patel and I. Donmez, J. Biol. Chem. 281, 18265 (2006).CrossRefGoogle Scholar
  21. 21.
    I. Donmez and S. S. Patel, Nucl. Acids Res. 34, 4216 (2006).CrossRefGoogle Scholar
  22. 22.
    M. Manosas, X. Xi, D. Bensimon, and V. Croquette, Nucl. Acids Res. 38, 5518 (2010).CrossRefGoogle Scholar
  23. 23.
    M. Gueron and J. L. Leroy, Meth. Enzymol. 261, 383 (1995).CrossRefGoogle Scholar
  24. 24.
    M. Szulik, M. Voehler, and M. P. Stone, Curr. Protoc. Nucl. Acid Chem. 59, 7.20.1 (2014).Google Scholar
  25. 25.
    S. Syed, M. Pandey, S. S. Patel, and T. Ha, Cell. Rep. 6, 1037 (2014).CrossRefGoogle Scholar
  26. 26.
    A. L. Lucius, A. Vindigni, R. Gregorian, J. A. Ali, A. F. Taylor, G. R. Smith, and T. M. Lohman, J. Mol. Biol. 324, 409 (2002).CrossRefGoogle Scholar
  27. 27.
    J. A. Cobb and L. Bjergbaek, Nucl. Acids Res. 34, 4106 (2006).CrossRefGoogle Scholar
  28. 28.
    A. Dhar and R. S. Lahue, Nucl. Acids Res. 36, 3366 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Scientific Center in ChernogolovkaChernogolovka, Moscow oblastRussia
  4. 4.Yaroslavl State UniversityYaroslavlRussia
  5. 5.Kurnakov Institute of General and Inorganic Chemistry Russian Academy of SciencesMoscowRussia

Personalised recommendations