Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 1024–1027 | Cite as

Observations of Acoustic Gravity Waves during the Solar Eclipse of March 20, 2015 in Kaliningrad

  • O. P. BorchevkinaEmail author
  • I. V. Karpov
  • A. I. Karpov
Chemical Physics of Atmospheric Phenomena
  • 17 Downloads

Abstract

Results of observations of atmospheric and ionospheric parameters during the solar eclipse of March 20, 2015 have been described. The observations have been conducted by lidar sensing in the lower atmosphere and analysis of the total electron content (TEC) in the ionosphere in Kaliningrad. Observations at the troposphere altitudes have been conducted using an atmospheric lidar. Ionospheric parameter TEC has been determined according to observations of navigation satellite signals. The spectral analysis of the monitored parameters during the solar eclipse has shown that, in the lower atmosphere and the ionosphere in a period range of 2–20 min, internal gravity waves (IGWs) and infrasonic waves are excited. During the main phase of the eclipse, the major contribution to variations in the parameters of the medium comes from infrasonic vibrations. Changes in the variations in the atmospheric and ionospheric parameters with IGW periods are observed only in the initial and final phases of the eclipse.

Keywords

solar eclipse acoustic gravity waves internal gravity waves infrasound lidar troposphere total electron content ionosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Hocke and K. Schlegel, Ann. Geophys. 14, 917 (1996).Google Scholar
  2. 2.
    V. G. Galushko, V. V. Paznukhov, Y. M. Yampolski, et al., Ann. Geophys. 16, 821 (1998).CrossRefGoogle Scholar
  3. 3.
    D. C. Fritts and M. J. Alexander, Rev. Geophys. 41, 1 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Lastovichka, J. Atmos. Sol.-Terr. Phys. 68, 479 (2006).CrossRefGoogle Scholar
  5. 5.
    V. P. Antonova, K. E. Dungenbaeva, A. V. Zalizovskii, A. S. Inchin, S. V. Kryukov, V. M. Somsikov, and Yu.M. Yampol’skii, Geomagn. Aeron. 46, 101 (2006).CrossRefGoogle Scholar
  6. 6.
    A. S. Polyakova and N. P. Perevalova, Adv. Space Res. 52, 1416 (2013).CrossRefGoogle Scholar
  7. 7.
    V. I. Kurkin, M. A. Chernigovskaya, V. N. Marichev, et al., Soln.-Zemn. Fiz., No. 17, 166 (2011).Google Scholar
  8. 8.
    M. V. Klimenko, V. V. Klimenko, I. E. Zakharenkova, et al., Earth, Planets Space 64, 441 (2012).CrossRefGoogle Scholar
  9. 9.
    P. A. Vasil’ev, I. V. Karpov, and S. P. Kshevetskii, Solar-Terr. Phys. 2, 99 (2016).Google Scholar
  10. 10.
    E. Gossard and W. Hooke, Waves in Atmosphere (Elsevier, Amsterdam, 1975).Google Scholar
  11. 11.
    N. S. Petrukhin, E. N. Pelinovsky, and E. K. Batsyna, Geomagn. Aeron. 52, 814 (2012).CrossRefGoogle Scholar
  12. 12.
    V. E. Kunitsin, S. N. Suraev, and R. R. Akhmedov, Mosc. Univ. Phys. Bull. 62, 122 (2007).CrossRefGoogle Scholar
  13. 13.
    N. A. Zabotin, O. A. Godin, and T. W. Bullett, J. Geophys. Res. A: Space Phys. 121, 3452 (2016).CrossRefGoogle Scholar
  14. 14.
    I. V. Karpov and S. P. Kshevetskii, Geomagn. Aeron. 54, 513 (2014).CrossRefGoogle Scholar
  15. 15.
    L. F. Chernogor, Geomagn. Aeron. 52, 768 (2012).CrossRefGoogle Scholar
  16. 16.
    O. P. Suslova, I. V. Karpov, and A. V. Radievskii, Russ. J. Phys. Chem. B 7, 652 (2013).CrossRefGoogle Scholar
  17. 17.
    L. F. Chernogor, Geomagn. Aeron. 52, 779 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. P. Borchevkina
    • 1
    Email author
  • I. V. Karpov
    • 1
    • 2
  • A. I. Karpov
    • 1
  1. 1.Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Kaliningrad Branch, Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave PropagationRussian Academy of SciencesKaliningradRussia

Personalised recommendations