Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 894–902 | Cite as

Calculation of the Lowest 2S Resonance State of He by a Stabilization Method

  • S. O. AdamsonEmail author
  • D. D. Kharlampidi
  • A. A. Preobrazhenskaya
  • A. I. Dement’ev
Elementary Physicochemical Processes
  • 16 Downloads

Abstract

The parameters of the lowest 2S resonance state of the He system were calculated using the Coulomb potential stabilization method. It was found that the errors of the resonance energy and width have the same character as that in the earlier studied two-electron systems H, He, and Li+. It was shown that the errors can be minimized using a single-electron basis sets, which provides the best reproduction of the low-lying states of the helium atom.

Keywords

stabilization method helium anion resonance states 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. O. Adamson, D. D. Kharlampidi, and A. I. Dementiev, Progr. Theor. Chem. Phys. 27, 101 (2013).CrossRefGoogle Scholar
  2. 2.
    A. A. Preobrazhenskaya, S. O. Adamson, D. D. Kharlampidi, and A. I. Dement’ev, Russ. J. Phys. Chem. B 8, 22 (2014).CrossRefGoogle Scholar
  3. 3.
    A. A. Preobrazhenskaya, S. O. Adamson, D. D. Kharlampidi, and A. I. Dement’ev, Russ. J. Phys. Chem. B 10, 133 (2016).CrossRefGoogle Scholar
  4. 4.
    J. S.-Y. Chao, M. F. Falcetta, and K. D. Jordan, J. Chem. Phys. 93, 1125 (1990).CrossRefGoogle Scholar
  5. 5.
    K. B. Bravaya, D. Zuev, E. Epifanovsky, et al., J. Chem. Phys. 138, 124106 (2013).CrossRefGoogle Scholar
  6. 6.
    W. C. Fon, K. A. Berrington, P. G. Burke, et al., J. Phys. B.: At. Mol. Opt. Phys. 22, 3939 (1989).CrossRefGoogle Scholar
  7. 7.
    M. Bylicki, J. Phys. B.: At. Mol. Opt. Phys. 24, 413 (1991).CrossRefGoogle Scholar
  8. 8.
    K. Bartschat, E. T. Hudson, M. P. Scott, et al., Phys. Rev. A 54, R998 (1996).CrossRefGoogle Scholar
  9. 9.
    A. Gopalan, J. Bömmels, S. Götte, et al., Eur. Phys. J. D 22, 17 (2003).CrossRefGoogle Scholar
  10. 10.
    F. E. Harris, Phys. Rev. Lett. 19, 173 (1967).CrossRefGoogle Scholar
  11. 11.
    J. Callaway, Phys. Rep. 45, 89 (1978).CrossRefGoogle Scholar
  12. 12.
    P. G. Burke and M. J. Seaton, Methods in Computational Physics: Atomic and Molecular Scattering, Ed. by B. Alder, S. Frenbach, and M. V. Rotenberg (Academic, New York, 1971), Vol. 10, Chap. 1.Google Scholar
  13. 13.
    Y. Sajeev, Chem. Phys. Lett. 587, 105 (2013).CrossRefGoogle Scholar
  14. 14.
    S. O. Adamson, D. D. Kharlampidi, and A. I. Dementiev, J. Chem. Phys. 128, 024101 (2008).CrossRefGoogle Scholar
  15. 15.
    D. D. Kharlampidi, A. I. Dementiev, and S. O. Adamson, Russ. J. Phys. Chem. A 84, 611 (2010).CrossRefGoogle Scholar
  16. 16.
    U. V. Riss and H.-D. Meyer, J. Phys. B 26, 4503 (1993).CrossRefGoogle Scholar
  17. 17.
    G. F. Drukarev, Collisions of Electrons with Atoms and Molecules (Nauka, Moscow, 1978; Springer, Berlin, Heidelberg, 2011).Google Scholar
  18. 18.
    G. W. F. Drake, Atomic, Molecular, and Optical Physics Handbook (AIP Press, New York, 1996), Chap. 11.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. O. Adamson
    • 1
    • 2
    Email author
  • D. D. Kharlampidi
    • 3
  • A. A. Preobrazhenskaya
    • 3
  • A. I. Dement’ev
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  3. 3.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations