Ethylene Hydrogenation on a Platinum Nanocoating at Various Electric Potentials

Abstract

The possibility of controlling the rate of ethylene hydrogenation on a platinum nanocoating is established by applying to it electric potentials of different polarities and magnitudes from an external voltage source. At a negative potential of −10 V, the hydrogenation rate increases by 4%, whereas at a positive potential of +10 V, the hydrogenation rate increases by 42% under the conditions of the experiment at room temperature, atmospheric pressure, and an initial mixture composition of 0.09C2H4 + 0.91H2. Quantum-chemical calculations of the energy of the reaction of platinum hydride with hydrogen, Pt2H2 + H2 → Pt2H3 + H, and the energy characteristics of similar reactions involving negatively and positively charged Pt2H2 are performed. It has been demonstrated that the presence of a negative or positive charge on Pt2H2 lowers the endothermicity of formation of H radicals by 18.4 or 22.5 kcal/mol, respectively. Based on the calculation results, a mechanism is proposed to explain the effect of the charge of a platinum coating on its catalytic activity in ethylene hydrogenation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    B. Roldan Cuenya, Thin Solid Films 518, 3127 (2010).

    Article  Google Scholar 

  3. 3.

    F. Behafarid and B. Roldan Cuenya, Top. Catal. 56, 1542 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener, Opt. Express 21, 4774 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, J. Phys. Chem. 118, 24680 (2014).

    CAS  Google Scholar 

  6. 6.

    E. Hazrati, G. Brocks, and G. A. de Wijs, J. Phys. Chem. 118, 5102 (2014).

    CAS  Google Scholar 

  7. 7.

    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, et al., Kinet. Catal. 56, 532 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, S. A. Tsyganov, and B. R. Shub, Russ. J. Phys. Chem. B 10, 538 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, B. R. Shub, and S. A. Tsyganov, Russ. J. Phys. Chem. B 7, 383 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 9, 596 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, S. A. Tsyganov, and B. R. Shub, Russ. J. Phys. Chem. B 35, 760 (2016).

    Article  Google Scholar 

  12. 12.

    T. Jacob and W. A. Goddart, J. Phys. Chem. B 108, 8311 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    J. Greeley and M. Mavrikakis, J. Phys. Chem. B 109, 3460 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    O. Yasuharu, Chem. Phys. Lett. 429, 209 (2006).

    Article  Google Scholar 

  15. 15.

    Y. Ishikawa, J. J. Mateo, D. A. Tryk, and C. R. Cabrera, J. Electroanal. Chem. 607, 37 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, V. M. Volokhov, and Z. G. Bazhanova, Russ. J. Inorg. Chem. 56, 1290 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 57, 1460 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    T. Ozaki, Phys. Rev. B 67, 155108 (2003).

    Article  Google Scholar 

  19. 19.

    T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. G. Slutskii.

Additional information

Original Russian Text © V.N. Korchak, M.V. Grishin, M.Ya. Bykhovskii, A.K. Gatin, V.G. Slutskii, V.A. Kharitonov, S.A. Tsyganov, B.R. Shub, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 11, pp. 29–33.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korchak, V.N., Grishin, M.V., Bykhovskii, M.Y. et al. Ethylene Hydrogenation on a Platinum Nanocoating at Various Electric Potentials. Russ. J. Phys. Chem. B 11, 932–936 (2017). https://doi.org/10.1134/S1990793117060057

Download citation

Keywords

  • controlled catalysis
  • platinum nanocoating
  • electric potential of platinum
  • ethylene hydrogenation