Advertisement

Russian Journal of Physical Chemistry B

, Volume 11, Issue 6, pp 932–936 | Cite as

Ethylene Hydrogenation on a Platinum Nanocoating at Various Electric Potentials

  • V. N. Korchak
  • M. V. Grishin
  • M. Ya. Bykhovskii
  • A. K. Gatin
  • V. G. Slutskii
  • V. A. Kharitonov
  • S. A. Tsyganov
  • B. R. Shub
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

The possibility of controlling the rate of ethylene hydrogenation on a platinum nanocoating is established by applying to it electric potentials of different polarities and magnitudes from an external voltage source. At a negative potential of −10 V, the hydrogenation rate increases by 4%, whereas at a positive potential of +10 V, the hydrogenation rate increases by 42% under the conditions of the experiment at room temperature, atmospheric pressure, and an initial mixture composition of 0.09C2H4 + 0.91H2. Quantum-chemical calculations of the energy of the reaction of platinum hydride with hydrogen, Pt2H2 + H2 → Pt2H3 + H, and the energy characteristics of similar reactions involving negatively and positively charged Pt2H2 are performed. It has been demonstrated that the presence of a negative or positive charge on Pt2H2 lowers the endothermicity of formation of H radicals by 18.4 or 22.5 kcal/mol, respectively. Based on the calculation results, a mechanism is proposed to explain the effect of the charge of a platinum coating on its catalytic activity in ethylene hydrogenation.

Keywords

controlled catalysis platinum nanocoating electric potential of platinum ethylene hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Bukhtiyarov and M. G. Slin’ko, Russ. Chem. Rev. 70, 147 (2001).CrossRefGoogle Scholar
  2. 2.
    B. Roldan Cuenya, Thin Solid Films 518, 3127 (2010).CrossRefGoogle Scholar
  3. 3.
    F. Behafarid and B. Roldan Cuenya, Top. Catal. 56, 1542 (2013).CrossRefGoogle Scholar
  4. 4.
    N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener, Opt. Express 21, 4774 (2013).CrossRefGoogle Scholar
  5. 5.
    E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, J. Phys. Chem. 118, 24680 (2014).Google Scholar
  6. 6.
    E. Hazrati, G. Brocks, and G. A. de Wijs, J. Phys. Chem. 118, 5102 (2014).Google Scholar
  7. 7.
    M. V. Grishin, A. K. Gatin, N. V. Dokhlikova, et al., Kinet. Catal. 56, 532 (2015).CrossRefGoogle Scholar
  8. 8.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, S. A. Tsyganov, and B. R. Shub, Russ. J. Phys. Chem. B 10, 538 (2016).CrossRefGoogle Scholar
  9. 9.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, B. R. Shub, and S. A. Tsyganov, Russ. J. Phys. Chem. B 7, 383 (2013).CrossRefGoogle Scholar
  10. 10.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, and B. R. Shub, Russ. J. Phys. Chem. B 9, 596 (2015).CrossRefGoogle Scholar
  11. 11.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, S. A. Tsyganov, and B. R. Shub, Russ. J. Phys. Chem. B 35, 760 (2016).CrossRefGoogle Scholar
  12. 12.
    T. Jacob and W. A. Goddart, J. Phys. Chem. B 108, 8311 (2004).CrossRefGoogle Scholar
  13. 13.
    J. Greeley and M. Mavrikakis, J. Phys. Chem. B 109, 3460 (2005).CrossRefGoogle Scholar
  14. 14.
    O. Yasuharu, Chem. Phys. Lett. 429, 209 (2006).CrossRefGoogle Scholar
  15. 15.
    Y. Ishikawa, J. J. Mateo, D. A. Tryk, and C. R. Cabrera, J. Electroanal. Chem. 607, 37 (2007).CrossRefGoogle Scholar
  16. 16.
    A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, V. M. Volokhov, and Z. G. Bazhanova, Russ. J. Inorg. Chem. 56, 1290 (2011).CrossRefGoogle Scholar
  17. 17.
    A. S. Zyubin, T. S. Zyubina, Yu. A. Dobrovol’skii, and V. M. Volokhov, Russ. J. Inorg. Chem. 57, 1460 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003).CrossRefGoogle Scholar
  19. 19.
    T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. N. Korchak
    • 1
  • M. V. Grishin
    • 1
  • M. Ya. Bykhovskii
    • 1
  • A. K. Gatin
    • 1
  • V. G. Slutskii
    • 1
  • V. A. Kharitonov
    • 1
  • S. A. Tsyganov
    • 1
  • B. R. Shub
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations